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Abstract

A deep Gaussian process (DGP) is a deep
network in which each layer is modelled
with a Gaussian process (GP). It is a flexi-
ble model that can capture highly-nonlinear
functions for complex data sets. However,
the network structure of DGP often makes
inference computationally expensive. In this
paper, we propose an efficient sequential in-
ference framework for DGP, where the data is
processed sequentially. We also propose two
DGP extensions to handle heteroscedasticity
and multi-task learning. Our experimental
evaluation shows the effectiveness of our se-
quential inference framework on a number of
important learning tasks.

1 Introduction

Gaussian processes (GP) [1] are a popular Bayesian
nonparametric model due to the simplicity of learn-
ing and inference. However, traditional GPs are often
limited when the underlying function exhibits complex
non-stationarity [1, 2], or dependencies between the
output dimensions. Many GP variants have been pro-
posed to address non-stationarity, e.g., by designing
non-stationary covariance functions [1, 2, 3], or warp-
ing GPs with different nonlinear functions [4, 5, 6].
Multi-output GP approaches have also been investi-
gated [7, 8, 9] to better capture correlations between
outputs. However, in multi-output GP approaches,
the correlations between outputs remain independent
of the input space. Hence their performance is of-
ten limited when data reflects input-dependent non-
stationarity [10, 11] or heteroscedastic noise.

Neal [12] showed that the limit of a single-layer net-
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work as the number of hidden units goes to infin-
ity yields a Gaussian process. Inspired by this and
the success of multi-layer neural networks, Damianou
et al. [11] proposed deep GPs (DGPs), where each
layer of a deep network structure is modelled as a
GP. DGPs can address both input-dependent non-
stationarity and multi-output modeling via its flexible
deep structure. More importantly, it allows us to learn
multi-level representations of complex data [11, 13].
However, its network structure makes inference com-
putationally expensive [11].

In this paper, we propose an efficient sequential infer-
ence framework for DGP models. By performing state
estimation and model updates recursively, we process
the input-output data pairs sequentially, allowing for
efficient learning. Furthermore, we extend DGP to
handle heteroscedastic outputs and multi-task learning
with partially observed data. We demonstrate the ef-
fectiveness of our novel inference algorithm on a range
of problems and datasets, showing both improved per-
formance and reduced computational cost.

2 Background

A Gaussian process is a collection of random variables,
any finite number of which have a joint Gaussian dis-
tribution [1]. Let D = {(xn, yn)}Nn=1 be our training
set composed of input (x ∈ RDx) and output (y ∈ R)
pairs. We assume that the output is generated from

y = f(x) + ε, (1)

with ε ∼ N (0, σ2), i.i.d. Gaussian noise with vari-
ance σ2. Furthermore, we assume a Gaussian process
prior over functions, i.e., f(x) ∼ GP(0, kθ(x,x

′)). For
simplicity, we denote the covariance function kθ(x,x

′)
where θ is a vector of hyperparameters. We collect θ
and σ2 into Θ = {θ, σ2}.
Given a new input x?, the predictive distribution over
the output y? and the hyperparameter Θ is

p(y?,Θ|x?,D) = p(y?|x?,D,Θ)p(Θ|D), (2)
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(a) Deep GP (b) Heteroscedastic Deep GP

Figure 1: The graphical model of DGP and its heteroscedastic extension.

where p(y?|x?,D,Θ) is Gaussian with mean µgp? and
variance σ2

gp? [1]

µgp? = k?θ[Kθ + σ2I]−1y,

σ2
gp? = k?,?θ − k?θ[Kθ + σ2I]−1(k?θ)

T + σ2.
(3)

The observation vector is y = [y1, ..., yN ]T . The
covariance matrix Kθ is computed with (Kθ)i,j =
kθ(x

i,xj), i, j = 1, ...N . Similarly, k?,?θ is computed
with kθ(x

?,x?) and the vector k?θ is computed with
(k?θ)i = kθ(x

?,xi), i = 1, ...N .

As p(Θ|D) ∝ p(y|x1:N ,Θ), a popular approach to infer
Θ is to minimize the negative log likelihood

− log p(y|x1:N ,Θ) (4)

=
1

2
yT [Kθ + σ2I]−1y +

1

2
log |Kθ + σ2I|+ 1

2
n log 2π.

The matrix inversion involved in Eq. (3-4) leads to
O(N3) complexity. Many approximations have been
proposed to improve computational efficiency. A de-
tailed review can be found in [14, 15].

2.1 Deep Gaussian Process

GPs are limited in their ability to learn non-stationary
functions (e.g., a function with sudden jumps) [5, 6].
Furthermore, the correlations between different out-
put variables are typically ignored if GPs are applied
independently for each output variable [8, 9]. Dami-
anou and Lawrence proposed a deep GP (DGP) where
the input-output mappings in a multi-layer deep net-
work are modelled by GPs [11]. Besides addressing
the above-mentioned difficulties of GPs, DGPs allow
for the flexible discovery of multiple-level representa-
tions of complex data [11, 13].

In DGPs, the output is assumed to be multi dimen-
sional, i.e., y ∈ RDy and to be generated as follows

h0 = x, hi = fi(hi−1) + vi, (i = 1, ..., L) (5)

y = fy(hL) + vy, (6)

where the latent state vector in the i-th layer is hi ∈
RDi . All functions are assumed to have GP priors,
i.e., fi ∼ GP(0, kθi) and fy ∼ GP(0, kθy ) and noise is
Gaussian, i.e., vi ∼ N (0, σ2

i I) and vy ∼ N (0, σ2
yI).

For simplicity, we combine all hyper-parameters (θi,
σ2
i , θy, σ2

y) into a vector Θdgp. The graphical model of
a DGP is shown in Fig.1(a).

Algorithm 1 Sequential inference for DGP

1: Input:
2: The n-th data pair: (xn,yn)
3: The DGP model parameters at the (n−1)-th step:
Mn−1 = {Mn−1

1 , . . . ,Mn−1
L ,Mn−1

y }
4: Output:
5: Estimates of the latent state at the n-th step: Ŝn =
{ĥn1:L}

6: DGP model parameters at the n-th step: Mn =
{Mn

1 , . . . ,M
n
L ,M

n
y }

7: State Estimation:
8: Draw Np samples of Sn from (7) & (8)
9: Weight samples by (9) & (11)

10: Estimate Ŝn by (10)
11: Model Update:
12: Update Mn−1 to Mn by using GPso with (xn, ĥn1 ),

· · · , (ĥnL−1, ĥ
n
L), (ĥnL,y

n).

3 Sequential Inference for Deep GP

In this work, we propose a sequential inference algo-
rithm which is able to perform learning for the DGP
model effectively and efficiently. The algorithm (sum-
marized in Alg. 1) assumes an online setting where
data is presented for learning in sequence. Specifically,
for each training pair, (xn,yn), the algorithm consists
of a state estimation phase and a model update phase.

During state estimation, the latent states Sn = {hn1:L}
are estimated using a sampling mechanism inspired
by sequential Monte Carlo [16, 17]. These estimated
latent states are then used to update all the layers of
the DGP model. However, if a standard GP is used
for this update, the computation required would have
a complexity of O(n3) due to the inversion of the kernel
matrix. To avoid the cubic complexity and to prevent
the complexity from growing as more data is presented,
we propose to use sparse online GP (GPso) [18, 19] for
model update. We describe these phases next.

3.1 State Estimation

In the state estimation phase, we seek to infer the la-
tent states Sn given the current DGP model and the
current training data (xn,yn). To achieve this, we
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estimate Sn, based on its posterior expectation

E[Sn] =

∫
Snp(Sn|xn,yn,Mn−1,Θdgp)dS

n,

whereMn−1 = {Mn−1
1 , . . . ,Mn−1

L ,Mn−1
y } denotes the

DGP model parameters given observations up to n−1,
and Θdgp denotes the hyper-parameters. Unfortu-
nately, this integral is not tractable due to the deep
architecture. Instead, we approximate it using a sam-
pling approach inspired by sequential Monte Carlo,
where we draw samples of Sn by sampling each layer of
our DGP in turn and weighting the resulting samples
by the likelihood in the observation layer.

Specifically, the kth sample (also called particle) of Sn

is drawn by sampling from the current DGP model
which is built upon the history of training pairs

hn1 (k) ∼ p(hn1 |xn,Mn−1
1 ,Θdgp), (7)

hni (k) ∼ p(hni |hni−1(k),Mn−1
i ,Θdgp) (i = 2.., L). (8)

Note that, as each layer has a GP prior, Eq. (7) and (8)
are Gaussian when conditioned on its input. Hence,
sampling from these distributions is straightforward.
Next, the (unnormalized) weight of the kth sample
is computed by using the current observation model,
Mn−1
y , which is based on all previous observations.

The value of the weight is given by

wn(k) = p(yn|hnL(k),Mn−1
y ,Θdgp). (9)

The above sampling procedure is repeated to produce
a set of Np weighted samples. These samples are then
used to estimate the expected latent states as

ĥni =

Np∑

k=1

ŵn(k)hni (k) (i = 1, . . . , L), (10)

where the normalized weight of the kth sample is

ŵn(k) =
wn(k)

∑Np
k=1 w

n(k)
. (11)

This estimate of the latent states, Ŝn = {ĥn1:L}, is then
used in the model update phase.

3.2 Model Update

Using the observations (xn,yn) and the expected la-

tent state Ŝn, we can update the model parameters
Mn−1 to Mn. As mentioned above, if this update was
performed using a full GP, the computational com-
plexity would be cubic in n, growing quickly as the
number of data points increases. Instead, we use the
sparse online GP (GPso) [18, 19] to update each layer
of the DGP.

The GPso uses the estimated states at the n-th obser-
vation as input-output pairs (xn, ĥn1 ), · · · , (ĥnL−1, ĥ

n
L),

(ĥnL,y
n) to update Mn. This consists of updating the

posterior mean and covariance of the active sets in all
the layers. Note that, the active set in one layer is
a fixed-size subset of the estimated state set in that
layer. The active set is recursively updated at each
step, based on the squared prediction error. Since the
technical details of GPso [18, 19] are standard in our
model update, they are omitted here for brevity but
are reviewed in our Supplementary Material.

By taking advantage of GPso, we can maintain the
complexity of both sampling from Eq.(7)-(8) and up-
dating the DGP model as O(N2

AC) for each step, where
NAC is a fixed constant which specifies the size of the
active set. In this case, the overall cost is O(N2

ACN)
that is linear in the number of training points N .
Hence, compared to O(N3) in the full GP, GPso en-
hances the effectiveness and efficiency of our sequential
inference, even for large datasets.

3.3 Prediction & Hyperparameter Learning

Given a trained DGP model M = {M1, . . . ,ML,My},
one can use it to perform prediction for a new input
x?. This is done efficiently through sampling

h?1(k) ∼ p(h?1|x?,M1,Θdgp) (12)

h?i (k) ∼ p(h?i |h?i−1(k),Mi,Θdgp) (i = 2, . . . , L) (13)

where each distribution is Gaussian as before. Conse-
quently, the predictive distribution for the output y?

is the Gaussian mixture

1

Np

Np∑

k=1

p(y?|h?L(k),My,Θdgp). (14)

Additionally, the hyperparameter vector Θdgp can be
learned. After all the training pairs are processed as
described, each layer of the DGP model has a fixed-
size active set. Based on these small active sets, Θdgp

can be efficiently refined by minimizing the negative
log likelihood with a standard gradient optimization
[1]. In our experiments, we iteratively perform our
sequential inference and hyper-parameter learning by
following the strategy in [18].

4 DGP Extensions

The proposed inference framework can be easily ex-
tended to handle more complex models and scenarios.
We describe two such instances below.
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4.1 Heteroscedastic Noise

Traditionally, the observation layer of a (deep) Gaus-
sian process is homoscedastic, i.e., σ2

y is a constant
which is independent of the input. However, many
real-world data sets exhibit varying levels of uncer-
tainty depending on the location within the input
space. To account for this, we extend DGP with a
heteroscedastic observation layer

sα = fα(hL) + vα, sβ = fβ(hL) + vβ , (15)

p(y|sα, sβ) = N (sα, exp(sβ)), (16)

where the input to this layer is the output, hL, of a
DGP (see Eq. 5); the means sα ∈ RDy and variances
sβ ∈ RDy of the observations are both modelled using
a GP prior, i.e., fα ∼ GP(0, kθα), fβ ∼ GP(0, kθβ ) and
vα ∼ N (0, σ2

αI), vβ ∼ N (0, σ2
βI).

We denote this extended model as the heteroscedastic
DGP (HDGP) and denote the hyperparameter vector
as Θhdgp=(θi, σ

2
i , θα, σ2

α, θβ , σ2
β). The graphical model

of the HDGP is shown in Figure 1(b). This model is
a generalization of both heteroscedastic GPs and deep
GPs. When sα = y, the HDGP reduces to an L-layer
deep GP [11]. When L = 0, i.e., x = hL, the HDGP
reduces to a standard heteroscedastic GP [20].

The sequential inference framework can be directly ap-
plied to the HDGP model. During the state estimation
phase, one draws the k-th sample of snα and snβ by using
hnL(k) (see Eq.7-8) in the heteroscedastic layer

snj (k) ∼ p(snj |hnL(k),Mn−1
j ,Θhdgp) (j = α, β). (17)

The unnormalized weight of the k-th sample is
then computed as wn(k) = p(yn|snα(k), snβ(k)) =
N (snα(k), exp(snβ(k))), and the state estimate is com-
puted as above. In the model update phase, besides
of updating Mn

1:L of DGP, one can use GPso with

(ĥnL, ŝ
n
α), and (ĥnL, ŝ

n
β) to update the model parame-

ters Mn
α and Mn

β of this heteroscedastic layer.

4.2 Multi-Task Learning

In practice, correlations between multiple outputs are
often important to make good predictions [8, 9]. How-
ever, the standard GP learns each individual outputs
independently without accounting for the output cor-
relations. As a result, its predictive performance is
limited, especially when some training data is only
partially observed (i.e., some output dimensions are
missing). In contrast, the deep network structure of
a DGP allows correlations between outputs to be rep-
resented by sharing the latent layers [10, 21]. Dealing
with partial observations is straightforward with our
sequential inference scheme. During state estimation,
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Figure 4: Dimensionality Reduction for Image Recon-
struction (the Frey dataset): the reconstruction er-
ror as a function of the number of episodes. Note
that there is no sequential inference & hyperparame-
ter learning episode in DGPvar. The results of DGPvar
are lines. The error bar is mean±standard deviation.

the unnormalized weight (Eq. 9) is computed by using
only observed dimensions of the output ynobs

wn(k) = p(ynobs|hnL(k),Mn−1
y ,Θdgp) (18)

and the missing output dimensions are estimated using
the same procedure as is used for estimating the latent
states. Then, in the model update phase, the observed
dimensions and the estimated missing dimensions form
the output vector to update the model parameters Mn

y

of the output layer.

5 Experiments

Here we experimentally validate the proposed ap-
proach. We mainly compare our proposed method
(our DGPseq) to variational inference for Deep GP
(DGPvar) [11] and sparse online GP (GPso) [18].
For all datasets, we normalize the output y to [0, 1]
and then subtract the mean. We use five random-
ized train/test partitions for all data sets. Based on
these five partitions, we report average root mean
squared error (RMSE) and mean negative log prob-
ability (MNLP) as our metrics, and average training
time (seconds) as a measure of computational com-
plexity. We use PCA to initialize the latent layers of
DGP, and choose an Automatic Relevance Determi-
nation (ARD) squared exponential kernel for all ap-

proaches, i.e., k(x,x′) = σ2
ker exp[−0.5

∑d
i=1 ci(xi −

x′i)
2], with the amplitude σ2

ker and the ARD weights
c1, · · · , cd.
In the following we highlight our evaluation on a num-
ber of learning tasks and datasets. The Supplementary
Material contains expanded results.

5.1 Unsupervised Learning

We start our experimental evaluation with two unsu-
pervised learning applications: learning a deep dynam-
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Figure 2: DGP as deep dynamical prior (the motion dataset): the RMSE/MNLP/training time (Column 1/2/3)
when changing the number of latent layers L (Row 1) and the dimensionality of latent layers D (Row 2). The
error bar is mean±standard deviation.

Data Methods RMSE(%) MNLP Train T(s)

Motion
GPso 1.45 -4.81 20

our DGPseq 1.0±0.1 -4.95±0.75 202±2
our HDGPseq 1.1±0.3 -5.15±0.20 236±8

Flu
GPso 5.3 -2.42 8

our DGPseq 4.0±0.6 -3.09±0.32 50±2
our HDGPseq 3.0±0.7 -3.16±0.11 108±6

Stock
GPso 6.4 -1.95 28

our DGPseq 6.4±0.1 -2.18±0.07 305±2
our HDGPseq 6.6±0.3 -2.41±0.04 413±4

Table 1: Missing Data in Multi-Task Learning (Motion/Flu/Stock).

ical prior for time series data and dimensionality re-
duction for image reconstruction.

5.1.1 Deep Dynamical Prior

DGP can be used as a flexible dynamical prior, where
the input is the time step and the output is the multi-
dimensional observation [22, 11]. We use three differ-
ent datasets to illustrate the robustness of DGP: the
motion, flu and stock datasets. The motion dataset1

consists of 2465 time/pose pairs of five physical exer-
cise activities (jumping jacks, two types of side twists,
squats and jogging) from CMU Mocap database. Each
pose is parameterized with a 62 dimensional vector
containing the 3D rotations of all joints. The flu
dataset2 consists of 543 time/flu-activity-rate pairs
from 2003-11-09 to 2014-03-30. Each flu-activity-rate
is a 9 dimensional vector containing the flu rates of

1http://mocap.cs.cmu.edu/
2http://www.google.org/flutrends/ca/

AB / BC / MB / NB / NL / NS / ON / SK /
QC in Canada. The stock dataset3 consists of 1500
time/Nasdaq index pairs collected from 1997-01-02 to
2014-11-18 (sampled every three working days). Each
index is a 5 dimensional vector containing Nasdaq log-
returns of Biotechnology, Composite, Industrial, Nas-
daq100 and Telecommunications.

We randomly create five partitions of the data with
training set sizes 1500/300/1000 for motion/flu/stock
datasets respectively. We use L = 2, D = 5, Np = 100
and NAC = 100/100/200 as the basic settings for our
DGPseq. We run our sequential inference and hyper-
parameter learning twice (called two episodes) to get
the hyperparameters into a reasonable region. Addi-
tionally, we run our sequential inference for both het-
eroscedastic GP and DGP, and denote them as our
HGPseq and our HDGPseq. We employ the same pa-
rameters of our DGPseq (whenever applicable) for our

3http://finance.yahoo.com/
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Figure 3: DGP as deep dynamical prior (the motion dataset): the RMSE/MNLP/training time (Column 1/2/3)
when changing the number of particles Np (Row 1) and the size of the active set NAC (Row 2). The error bar
is mean±standard deviation.

HGPseq, our HDGPseq, GPso [18] and DGPvar [11].
Note that here we mainly show our evaluation on the
motion dataset, but similar results on the other two
datasets are available in the Supplemental Material.

Complexity of the Deep Model: To evaluate the
robustness of DGPvar [11] and our DGPseq, we var-
ied the number of latent layers L and dimensionality
of each layer D. As shown in Fig. 2, for all differ-
ent L and D, our DGPseq outperforms DGPvar [11] in
terms of both prediction error while being more com-
putationally efficient to train.

Properties of Our Inference Framework: To
study the influence of the inference algorithm param-
eters, we varied the number of particles, Np, and the
size of active set, NAC . As shown in Fig. 3, the per-
formance of all our approaches tend to improve (as ex-
pected) when Np and/or NAC increases. Furthermore,
our DGPseq outperforms the baseline GPso [18]. It il-
lustrates that the predictive performance of deep GP
models is generally better than shallow GP models.

Heteroscedastic Learning: We now evaluate the
sequential inference procedure for the heteroscedas-
tic DGP extension. As shown in Figs. 2 and 3, our
HDGPseq generally outperforms our DGPseq with a
competitive RMSE but a much lower MNLP. This is
due to the fact that the heteroscedastic observation
layer in our HDGPseq is able to achieve a lower predic-
tion uncertainty in regions of the space which have less
noise. Hence, compared to our DGPseq, our HDGPseq
can further improve the prediction performance with-
out significantly increasing computation.

Missing Data in Multi-Task Learning: A DGP
can be used as a multi-output GP model, and we as-
sess the performance of our framework to handle miss-
ing data. For motion, the observations of dimensions
27-33/49-55 (right arm / left leg) are missing dur-
ing the time steps 700-720/1200-1220. For flu, the
observations of provinces 1-5/6-9 are missing during
the time steps 80-100/30-50. For stock, the obser-
vations of Biotechnology / Composite / Industrial /
Nasdaq100 / Telecommunications are missing during
the time steps 150-200/350-400/550-600/750-800/950-
1000. Table 1 shows that our DGPseq and HDGPseq
outperform GPso[18] with a lower reconstruction error
of missing dimensions. This demonstrates that deep
GPs are able to capture correlations between different
outputs due to the shared latent layers.

Comparison to the state-of-the-art: Het-
eroscedastic GPs and multi-task GPs have been well
studied in the GP community [23, 24, 21, 25, 10]. We
use the motorcycle dataset [26] and the multi-output
Jura dataset [10] in order to compare with state-of-the-
art approaches in these two domains. Here we show
the results of Jura (for multi-task learning), and re-
port the results of motorcycle (for heteroscedasticity)
in the Supplementary Material.

In the Jura dataset, the input is a 2D location and
the output is the measurement of cadmium, nickel and
zinc concentrations. The total number of data pairs is
359, where 100 measurements of cadmium are miss-
ing. We follow the experimental settings of [10] and
use mean absolute error (MAE) for evaluation, choose
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Methods MAE Train T(s)
GP 0.5739±0.0003 74

CMOGP 0.4552±0.0013 784
SLFM 0.4578±0.0025 792
GPRN 0.4040±0.0006 1040

GPRN-NPV1 0.4147±0.0001 130
our DGPseq 0.4150±0.0061 21

Table 2: Comparison with State-of-the-art Multi-task
GPs (the Jura dataset). The results of GP, CMOGP,
SLFM, GPRN are from [10].

the number of latent layers L = 1, the dimensionality
of latent layers D = 2. Both the number of parti-
cles and the size of active set in our DGPseq are 200.
We run our DGPseq five times for one training episode
and compare the results with the standard GP, con-
volved multiple outputs GP (CMOGP)[25], semipara-
metric latent factor model (SLFM)[21], GP regression
networks (GPRN)[10], and GPRN with nonparametric
variational inference (mode 1, GPRN-NPV1) [27]. As
shown in Table 2, our DGPseq achieves a competitive
MAE but with much less training time indicating that
our sequential inference is efficient and able to capture
the correlations between multiple outputs.

5.1.2 Dimensionality Reduction

Low-dimensional latent representations provide a
means to avoid the so-called ”curse of dimensionality”
and the low-dimensional latent layers of a DGP can
be understood as a form of dimensionality reduction.
Inspired by [28], we use DGP for dimensionality re-
duction to reconstruct images from noisy observations.
Towards this goal we use the Frey face dataset4 which
is composed of 1900 images of size 20× 28 = 560. We
add Gaussian noise (std dev 0.1) to the images, and
use these noisy images as both the input and output
of the DGP model.

Figure 4 shows the RMSE between the noiseless image
and the reconstruction as a function of the number of
training episodes in our learning framework. Hyperpa-
rameter learning was performed after the first episode
and the hyperparameters were fixed for the remaining
episodes. We chose the number of particles Np and the
size of active set NAC to be 100 in our DGPseq. To re-
duce the randomness of sampling, we run our DGPseq
five times for each episode and report the average re-
construction RMSE. As shown in Fig. 4, our DGPseq
outperforms DGPvar. Furthermore, as expected, our
DGPseq performs better when the number of training
episodes increases, or the width and the depth of the
deep structure also increases. Additional qualitative
results can be found in the Supplementary Material.

4http://www.cs.nyu.edu/∼roweis/data.html

Methods RMSE MNLP Train T(s)
GPso 9.33 ±0.15 7.45 ±0.02 37±2

DGPvar 9.26±0.41 8.51±1.35 33486±1370
our DGPseq 8.86±0.23 7.23±0.08 546±18

Table 3: DGP as Regressor (the Parkinsons dataset).

5.2 Supervised Learning

In this section, we focus our evaluation on the su-
pervised setting for large training sets and/or high-
dimensional data sets.

5.2.1 Regression

We employ the Parkinsons telemonitoring dataset5,
which is a six-month biomedical voice recording from
42 people with early-stage Parkinson’s disease for a
total of 5875 input/output pairs. The input is a 16-
dimensional biomedical voice feature vector and the
output is a 2-dimensional score vector (motor UPDRS
score and total UPDRS score). We randomly partition
the data five times and choose each time training/test
sets to be of size 5000/875. The basic setting of our
DGPseq is L = 2, D = 2, Np = 500, NAC = 100. We
run our DGPseq for one training episode with sequen-
tial inference and hyperparameter learning. We em-
ploy the same parameters of our DGPseq to GPso and
DGPvar whenever applicable. As shown in Table 3,
our DGPseq outperforms GPso and DGPvar. Further-
more, compared to DGPvar, our DGPseq significantly
reduces the computation.

5.2.2 Classification

We evaluate our approach for classification on the Tu-
mor gene expression dataset6 and the MNIST Dig-
its dataset7. The tumor data consists of a predefined
training and test sets of sizes 144 and 46 respectively.
The input contains 16,063 tumor genes (16,063 dimen-
sional input vector) and the output contains 14 can-
cer classes (14 dimensional binary output vector). For
the tumor data, the basic settings of our DGPseq are
L = 3, D = 12, Np = 200. NAC is the size of the data
as we did not employ sparsification. We use a lin-
ear kernel to reduce computation as the data is very
high-dimensional. We run our DGPseq for five training
episodes with sequential inference and hyperparame-
ter learning. We employ the same parameters for our
DGPseq, GPso [18] and DGPvar [11] whenever appli-
cable. As shown in Table 4, our DGPseq achieves the
best classification accuracy and also significantly out-
performs DGPvar [11] in terms of computation.

5http://archive.ics.uci.edu/ml/index.html
6http://www.genome.wi.mit.edu/
7http://yann.lecun.com/exdb/mnist/
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Data Methods Acc Train T(s)

Tumor
GPso 0.65 1

DGPvar 0.50 2256
our DGPseq 0.73 53

MNIST

GPso 0.9500 60mins
DGPvar - -

DVI-GPLVM 0.9405 20mins*
our DGPseq 0.9424 180mins

Table 4: Classification. For MNIST, the results of
DVI-GPLVM are from [30]. (*) Distributed implemen-
tation using an unreported number of cores.

For the MNIST data, there are 60,000 training im-
ages and 10,000 test images. The input is a 28 × 28
image (784 dimensional input vector) and the output
contains 0-9 digits (10 dimensional binary output vec-
tor). Classification accuracy on the test set (i.e., the
percentage of correctly classified examples) is evalu-
ation metric. The basic settings of our DGPseq are
L = 1, D = 400, Np = 100 and NAC = 1000. The
covariance function of GP is chosen as the 1st-order
arc-cosine kernel [29]. Additionally, instead of using
the latent state h as the output of each layer, we use
the logistic activation function of h, i.e., (1 + e−h)−1

as the output of each layer, which mimics neural net-
works for classification. Note that this modification is
simple to accommodate in our inference algorithm by
simply propagating the particles through the activa-
tion function when sampling. We run our DGPseq for
one training episode. We employ the same parameters
for GPso [18] whenever applicable. As this dataset
is large-size, DGPvar [11] is infeasible. Instead, we
compare our DGPseq to the state-of-the-art scalable
GPLVM with distributed variational Inference (DVI-
GPLVM) [30]. As shown in Table 4, our DGPseq out-
performs DVI-GPLVM in terms of accuracy with a
comparable amount of training time (considering that
their reported timing was parallelized while our imple-
mentation is currently serial). GPso outperforms both
DVI-GPLVM and our DGPseq on this dataset, how-
ever as noted in [30], the primary purpose here is to
demonstrate the scalability of the approach. These re-
sults demonstrate the ability of our approach to scale
to both large and high dimensional datasets.

6 Related Work

Many GP variants have been proposed to address non-
stationarity. The ideas are primarily based on design-
ing non-stationary covariance functions [1, 2, 3], or
warping GP with different nonlinear functions [4, 5, 6].
However, these GP approaches are designed for single-
output modelling. Hence, their performance is often
limited for multi-output modelling, because the corre-

lations between outputs are ignored. Multi-task GP
approaches have been investigated [7, 8, 9] with the
motivation that dependencies between outputs can im-
prove the prediction accuracy. However, the correla-
tions between outputs remain independent of the input
space and the performance of these methods is often
limited when data reflect non-stationarity [10].

Several GP based latent variable models [22, 31, 32,
33, 34] and GP based network models [10, 21] can be
used to represent non-stationarity and capture multi-
output correlations, by learning a shared nonlinear
latent space for multiple outputs. The DGP model
[11] can be seen as a multi-layer generalization of
these latent variable models. Due to the intractability
of the posterior in DGP, variational approximations
[11, 24, 32, 33] are commonly used for inference. How-
ever, these approximate inference frameworks are often
computationally expensive, especially when the size of
the datasets increases. Some extensions have been pro-
posed by using the distributed variational computation
[30] and the nested variational compression [28].

Here we proposed a novel and efficient inference frame-
work which processes training pairs in sequence. The
framework is flexible, potentially allowing us to ex-
ploit other deep learning techniques [35, 36] such as
the ReLU activation functions and dropout. Further-
more, our sequential inference framework opens the
possibility of using GPs inside other network struc-
tures from the neural network community (e.g., CNNs,
RNNs, LSTMs) [36]. Finally, our HDGP can be seen
as a generalization of the DGP model [11] and the het-
eroscedastic GP model (HGP) [20, 23, 24].

7 Conclusion

In this paper, we develop an efficient sequential in-
ference framework for the DGP model. By recursively
performing state estimation and model update, our se-
quential inference framework allows us to process the
training pairs in a Bayesian forward-backward fashion
to maintain computation efficiency. Furthermore, we
show the generality of the inference framework by ap-
plying it to heteroscedastic noise and multi-task learn-
ing. In the future, it would be interesting to perform
our sequential inference for input-connected architec-
tures of deep GP [13] and other deep networks [36].
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