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Abstract
Carefully crafted, often imperceptible, adversarial
perturbations have been shown to cause state-of-
the-art models to yield extremely inaccurate out-
puts, rendering them unsuitable for safety-critical
application domains. In addition, recent work has
shown that constraining the attack space to a low
frequency regime is particularly effective. Yet, it
remains unclear whether this is due to generally
constraining the attack search space or specifically
removing high frequency components from con-
sideration. By systematically controlling the fre-
quency components of the perturbation, evaluating
against the top-placing defense submissions in the
NeurIPS 2017 competition, we empirically show
that performance improvements in both the white-
box and black-box transfer settings are yielded only
when low frequency components are preserved.
In fact, the defended models based on adversar-
ial training are roughly as vulnerable to low fre-
quency perturbations as undefended models, sug-
gesting that the purported robustness of state-of-
the-art ImageNet defenses is reliant upon adver-
sarial perturbations being high frequency in na-
ture. We do find that under L-inf-norm constraint
16/255, the competition distortion bound, low fre-
quency perturbations are indeed perceptible. This
questions the use of the L-inf-norm, in particular,
as a distortion metric, and, in turn, suggests that ex-
plicitly considering the frequency space is promis-
ing for learning robust models which better align
with human perception.

1 Introduction
Despite the impressive performance deep neural networks
have shown, researchers have discovered that they are, in
some sense, ‘brittle’; small carefully crafted ‘adversarial’ per-
turbations to their inputs can result in wildly different outputs
[Szegedy et al., 2013]. Even worse, these perturbations have
been shown to transfer: learned models can be successfully
manipulated by adversarial perturbations generated by attack-
ing distinct models. An attacker can discover a model’s vul-
nerabilities even without access to it.

The goal of this paper is to investigate the relationship
between a perturbation’s frequency properties and its effec-
tiveness, and is motivated by recent work showing the effec-
tiveness of low frequency perturbations in particular. [Guo
et al., 2018] shows that constraining the perturbation to the
low frequency subspace improves the query efficiency of the
decision-based gradient-free boundary attack [Brendel et al.,
2017]. [Zhou et al., 2018] achieves improved transferability
by suppressing high frequency components of the perturba-
tion. Similarly, [Sharma et al., 2018] applied a 2D Gaussian
filter on the gradient w.r.t. the input image during the iterative
optimization process to win the CAAD 2018 competition1.

However, two questions still remain unanswered:

1. is the effectiveness of low frequency perturbations sim-
ply due to the reduced search space or specifically due
to the use of low frequency components? and

2. under what conditions are low frequency perturbations
more effective than unconstrained perturbations?

To answer these questions, we design systematic exper-
iments to test the effectiveness of perturbations manipulat-
ing specified frequency components, utilizing the discrete co-
sine transform (DCT). Testing against state-of-the-art Ima-
geNet [Deng et al., 2009] defense methods, we show that,
when perturbations are constrained to the low frequency sub-
space, they are 1) generated faster; and are 2) more trans-
ferable. These results mirror the performance obtained when
applying spatial smoothing or downsampling-upsampling op-
erations. However, if perturbations are constrained to other
frequency subspaces, they perform worse in general. This
confirms that the effectiveness of low frequency perturbations
is due to the application of a low-pass filter in the frequency
domain of the perturbation rather than a general reduction in
the dimensionality of the search space.

On the other hand, we also notice that the improved effec-
tiveness of low frequency perturbations is only significant for
defended models, but not for clean models. In fact, the state-
of-the-art ImageNet defenses in test are roughly as vulner-
able to low frequency perturbations as undefended models,
suggesting that their purported robustness is reliant upon the
assumption that adversarial perturbations are high frequency

1Competition on Adversarial Attacks and Defenses: http://hof.
geekpwn.org/caad/en/index.html
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in nature. As we show, this issue is not shared by the state-of-
the-art on CIFAR-10 [Madry et al., 2017], as the dataset is too
low-dimensional for there to be a diverse frequency spectrum.
Finally, based on the perceptual difference between the un-
constrained and low frequency attacks, we discuss the prob-
lem of using the commonly used `∞ norm as a perceptual
metric for quantifying robustness, illustrating the promise in
utilizing frequency properties to learn robust models which
better align with human perception. Our supplementary ma-
terial is provided here2.

2 Background
Generating adversarial examples is an optimization problem,
while generating transferable adversarial examples is a gener-
alization problem. The optimization variable is the perturba-
tion, and the objective is to fool the model, while constrain-
ing (or minimizing) the magnitude of the perturbation. `p
norms are typically used to quantify the strength of the per-
turbation; though they are well known to be poor perceptual
metrics [Zhang et al., 2018]. Constraint magnitudes used in
practice are assumed to be small enough such that the ball is
a subset of the imperceptible region.

Adversarial perturbations can be crafted in not only the
white-box setting [Carlini and Wagner, 2017b; Chen et al.,
2017a] but in limited access settings as well [Chen et al.,
2017b; Alzantot et al., 2018a], when solely query access
is allowed. When even that is not possible, attacks oper-
ate in the black-box setting, and must rely on transferabil-
ity. Finally, adversarial perturbations are not a continuous
phenomenon, recent work has shown applications in dis-
crete settings (e.g. natural language) [Alzantot et al., 2018b;
Lei et al., 2018].

Numerous approaches have been proposed as defenses, to
limited success. Many have been found to be easily circum-
vented [Carlini and Wagner, 2017a; Sharma and Chen, 2018;
Athalye et al., 2018], while others have been unable to scale
to high-dimensional complex datasets, e.g. ImageNet [Smith
and Gal, 2018; Papernot and McDaniel, 2018; Li et al., 2018;
Schott et al., 2018]. Adversarial training, training the
model with adversarial examples [Goodfellow et al., 2014;
Tramèr et al., 2017; Madry et al., 2017; Ding et al., 2018],
has demonstrated improvement, but is limited to the prop-
erties of the perturbations used, e.g. training exclusively
on `∞ does not provide robustness to perturbations gener-
ated under other distortion metrics [Sharma and Chen, 2017;
Schott et al., 2018]. In the NeurIPS 2017 ImageNet com-
petition, winning defenses built upon these trained mod-
els to reduce their vulnerabilities [Kurakin et al., 2018;
Xie et al., 2018].

3 Methods
3.1 Attacks
We consider `∞-norm constrained perturbations, where the
perturbation δ satisfies ‖δ‖∞ ≤ ε with ε being the maxi-
mum perturbation magnitude, as the NeurIPS 2017 competi-
tion bounded δ with ε = 16. The Fast Gradient Sign Method

2https://arxiv.org/abs/1903.00073 (appendix)

DCT_Low DCT_Mid DCT_High DCT_Random

Figure 1: Masks used to constrain the frequency space where n =
128 and d = 299 (ImageNet). Red denotes frequency components
of the perturbation which will be masked when generating the ad-
versarial example, both during and after the optimization process.

Cln 1 [InceptionV3]

Cln 3
[InceptionV3, InceptionV4,

ResNetV2 101]
Adv 1 [AdvInceptionV3]

Adv 3
[AdvInceptionV3, Ens3AdvInceptionV3,

Ens4AdvInceptionV4]

Table 1: Models used for generating black-box transfer attacks.

(FGSM) [Goodfellow et al., 2014] provides a simple, one-
step gradient-based perturbation of `∞ ε size as follows:

δFGSM = s · ε · sign(∇xJ(x, y)) (1)

where x is the input image, J is the classification loss func-
tion, sign(·) is the element-wise sign function3. When y is the
true label of x and s = +1, δ is the non-targeted attack for
misclassification; when y is a target label other than the true
label of x and s = −1, δ is the targeted attack for manipulat-
ing the network to wrongly predict y.

FGSM suffers from an “underfitting” problem when ap-
plied to non-linear loss function, as its formulation is de-
pendent on a linearization of J about x. The Basic Iterative
Method (BIM) [Kurakin et al., 2016; Madry et al., 2017], oth-
erwise known as PGD (without random starts), runs FGSM
for multiple iterations to rectify this problem. The top-placing
attack in the previously mentioned NeurIPS 2017 competi-
tion, the Momentum Iterative Method (MIM) [Dong et al.,
2017], replaces the gradient ∇xJ(x, y) with a “momentum”
term to prevent the “overfitting” problem, caused by poor lo-
cal optima, in order to improve transferability. Thus, we use
this method for our NeurIPS 2017 defense evaluation.

3.2 Frequency Constraints
Our goal is to examine whether the effectiveness of low fre-
quency perturbations is due to a reduced search space in gen-
eral or due to the specific use of a low-pass filter in the fre-
quency domain of the perturbation. To achieve this, we use
the discrete cosine transform (DCT) [Rao and Yip, 2014] to
constrain the perturbation to only modify certain frequency
components of the input.

The DCT decomposes a signal into cosine wave compo-
nents with different frequencies and amplitudes. Given a 2D
image (or perturbation) x ∈ Rd×d, the DCT Transform of x
is v = DCT(x), where the entry vi,j is the magnitude of its
corresponding basis functions.

3sign = 1 if x > 0, sign = −1 if x < 0, sign = 0, if x = 0.
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The numerical values of i and j represent the frequen-
cies, i.e. smaller values represent lower frequencies and
vice versa. The DCT is invertible, with an inverse transform
x = IDCT(v)4.

We remove certain frequency components of the perturba-
tion δ by applying a mask to its DCT transform DCT(δ).
We then reconstruct the perturbation by applying IDCT on
the masked DCT transform. Specifically, the mask, m ∈
{0, 1}d×d, is a 2D matrix image whose pixel values are 0’s
and 1’s, and the “masking” is done by element-wise product.

We can then reconstruct the “transformed” perturbation by
applying the IDCT to the masked DCT(δ). The entire trans-
formation can then be represented as:

FreqMask(δ) = IDCT(Mask(DCT(δ))) . (2)

Accordingly in our attack, we use the following gradient

∇δJ(x+ FreqMask(δ), y) .

We use 4 different types of FreqMask to constrain the
perturbations, as shown in Figure 1. DCT High only pre-
serves high frequency components; DCT Low only preserves
low frequency components; DCT Mid only preserves mid
frequency components; and DCT Rand preserves randomly
sampled components. For reduced dimensionality n, we pre-
serve n×n components. Recall that v = DCT(x), DCT Low
preserves components vi,j if 1 ≤ i, j ≤ n; DCT High
masks components if 1 ≤ i, j ≤

√
d2 − n2; DCT Mid and

DCT Rand also preserve n×n components, the detailed gen-
eration processes can be found in the appendix. Figure 1
visualizes the masks when d = 299 (e.g. ImageNet) and
n = 128. Note that when n = 128, we only preserve
1282/2992 ≈ 18.3% of the frequency components, a small
fraction of the original unconstrained perturbation.

4 Results and Analyses
To evaluate the effectiveness of perturbations under different
frequency constraints, we test against models and defenses
from the NeurIPS 2017 Adversarial Attacks and Defences
Competition [Kurakin et al., 2018].

Threat Models
We evaluate attacks in both the non-targeted and targeted
case, and measure the attack success rate (ASR) on 1000
test examples from the NeurIPS 2017 development toolkit5.
We test on ε = 16/255 (competition distortion bound) and
iterations = [1, 10] for the non-targeted case; ε = 32/255
and iterations = 10 for the targeted case. The magnitude
for the targeted case is larger since targeted attacks, partic-
ularly on ImageNet (1000 classes), are significantly harder.
As can be seen in Figure 5 and 6, unconstrained adversarial
perturbations generated under these distortion bounds are still
imperceptible.

4DCT / IDCT is applied to each color channel independently.
5https://www.kaggle.com/c/6864/download/dev toolkit.zip

Attacks
As described in Section 3, we experiment with the original
unconstrained MIM and frequency constrained MIM with
masks shown in Figure 1. For each mask type, we test
n = [256, 128, 64, 32] with d = 299. For DCT Rand, we
average results over 3 random seeds.

To describe the attack settings, we specify model place-
holders A and B. We call an attack white-box, when we at-
tack model A with the perturbation generated from A itself.
We call an attack grey-box, when the perturbation is generated
from A, but used to attack a “defended” A, where a defense
module is prepended toA. We call an attack black-box (trans-
fer), when the perturbation generated fromA is used to attack
distinct B, where B can be defended or not. Note that this is
distinct from the black-box setting discussed in [Guo et al.,
2018], in which query access is allowed.

Target Models and Defenses for Evaluation
We evaluate each of the attack settings against the top
defense solutions in the NeurIPS 2017 competition [Ku-
rakin et al., 2018]. Each of the top-4 NeurIPS 2017
defenses prepend a tuned (or trained) preprocessor to
an ensemble of classifiers, which for all of them in-
cluded the strongest available adversarially trained model:
EnsAdvInceptionResNetV26 [Tramèr et al., 2017].
Thus, we use EnsAdvInceptionResNetV2 to bench-
mark the robustness7 of adversarially trained models.

We then prepend the preprocessors from the top-4 NeurIPS
2017 defenses to EnsAdvInceptionResNetV2, and de-
note the defended models as D1, D2, D3, and D4, respec-
tively. Regarding the preprocessors, D1 uses a trained de-
noiser where the loss function is defined as the difference be-
tween the target model’s outputs activated by the clean im-
age and denoised image [Liao et al., 2017]; D2 uses random
resizing and random padding [Xie et al., 2017]; D3 uses a
number of image transformations: shear, shift, zoom, and ro-
tation [Thomas and Elibol, 2017]; and D4 simply uses median
smoothing [Kurakin et al., 2018].

For our representative cleanly trained model, we evaluate
against the state-of-the-art NasNetLarge 3318 [Zoph et
al., 2017]. We denote EnsAdvInceptionResNetV2 as
EnvAdv and NasNetLarge 331 as NasNet for brevity.

Source Models for Perturbation Generation
For white-box attacks, we evaluate perturbations generated
from NasNet and EnsAdv to attack themselves respectively.
For grey-box attacks, we use perturbations generated from
EnsAdv to attack D1, D2, D3, and D4 respectively. For black-
box attacks, since the models for generating the perturbations
need to be distinct from the ones being attacked, we use 4
different sources (ensembles) which vary in ensemble size
and whether the models are adversarially trained or cleanly
trained, as shown in Table 1. In summary, for black-box
attacks, perturbations generated from Adv 1, Adv 3, Cln 1,

6https://github.com/tensorflow/models/tree/master/research/
adv imagenet models

7EnsAdvInceptionResNetV2 is to be attacked.
8https://github.com/tensorflow/models/tree/master/research/slim

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3391



and Cln 3 are used to attack NasNet, EnsAdv, D1, D2, D3,
and D4.

4.1 Overview of the Results
As described, we test the unconstrained and constrained per-
turbations in the white-box, grey-box, and black-box scenar-
ios. Representative results are shown in Figure 2a, 2b, 2c,
and 2d. In each of these plots, the vertical axis is attack
success rate (ASR), while the horizontal indicates the num-
ber of frequency components kept (Dimensionality). Un-
constrained MIM is shown as a horizontal line across the
dimensionality axis for ease of comparison. In each fig-
ure, the plots are, from left to right, non-targeted attack with
iterations = 1, non-targeted with iterations = 10, and tar-
geted with iterations = 10. From these figures, we can see
that DCT Low always outperforms the other frequency con-
straints, including DCT High, DCT Mid and DCT Rand.

In the appendix, we show results where the perturba-
tion is constrained using a spatial smoothing filter or a
downsampling-upsampling filter (perturbation resized with
bilinear interpolation). The performance mirrors that of Fig-
ure 2a, 2b, 2c, and 2d, further confirming that the effective-
ness of low frequency perturbations is not due to a general re-
striction of search space, but due to the low frequency regime
itself. Thus, in our remaining experiments, we focus on low
frequency constrained perturbations induced with DCT Low.

We compare ASR and relative changes across all black-
box transfer pairs between standard unconstrained MIM and
MIM constrained with DCT Low n = 128, on non-targeted
attacks with both iterations = 1 and iterations = 10. This
comparison is visualized in Figure 3 and 4. We also show
that these results do not transfer to the significantly lower-
dimensional CIFAR-10 dataset (d = 32, minimum n used
in ImageNet experiments), as the rich frequency spectrum of
natural images is no longer present.

4.2 Observations and Analyses
White-box Evaluation
Figure 2a and 2b show the white-box ASRs on EnsAdv and
NasNet respectively. For EnsAdv, we can see that DCT Low
improves ASR in the non-targeted case with iterations = 1
and in the targeted case with iterations = 10, but not in the
non-targeted case with iterations = 10. However, in this case,
DCT Low still outperforms other frequency constraints and
does not significantly deviate from unconstrained MIM’s per-
formance. When the number of iterations is large enough
that unconstrained MIM can succeed consistently, constrain-
ing the space only limits the attack, but otherwise, the low
frequency prior is effective. Therefore, low frequency per-
turbations are more “iteration efficient”, as they can be found
more easily with a less exhaustive search, which is practically
helpful computationally.

However, for white-box attacks on NasNet in Figure 2b,
we see that although DCT Low still outperforms the other
frequency constraints, it does perform worse than uncon-
strained MIM. Comparing Figure 2a and 2b, it is clear that
DCT Low performs similarly against the adversarially trained
model as with the cleanly trained model, the difference here
is due to unconstrained MIM performing significantly better

against the cleanly trained model than against the adversari-
ally trained model. This implies that the low frequency prior
is useful against defended models, in particular, since it ex-
ploits the space where adversarial training, which is necessar-
ily imperfect, fails to reduce vulnerabilities.

Grey-box Evaluation
As previously mentioned, in the grey-box case, we generate
the perturbations from the undefended EnsAdv and use them
to attack D1, D2, D3 and D4 (which include preprocessors
prepended to EnsAdv). Figure 2c shows the ASR results
averaged over D1∼4. DCT Low outperforms unconstrained
MIM by large margins in all cases. Comparing Figure 2a with
Figure 2c, the larger difference between unconstrained MIM
and DCT Low in the grey-box case reflects the fact that the
top NeurIPS 2017 defenses are not nearly as effective against
low frequency perturbations as they are against standard un-
constrained attacks. In fact, DCT Low yields the same ASR
on D1, the winning defense submission in the NeurIPS 2017
competition, as on the adversarially trained model without the
preprocessor prepended; the preprocessors are not effective
(at all) at protecting the model from low frequency perturba-
tions, even in the targeted case, where success is only yielded
if the model is fooled to predict, out of all 1000 class labels,
the specified target label. Results against the individual de-
fenses are presented in the appendix.

Black-box Evaluation (Defended)
For assessing black-box transferability, we use Cln 1, Cln 3,
Adv 1, Adv 3 in Table 1 as the source models for generat-
ing perturbations, and attack EnsAdv and D1∼4, resulting in
20 source-target pairs in total. The average ASR results over
these pairs are reported in Figure 2d. In the non-targeted case,
we again see that DCT Low significantly outperforms uncon-
strained MIM. However, in the targeted case, constraining to
the low frequency subspace does not enable MIM to succeed
in transferring to distinct black-box defended models due to
the difficult nature of targeted transfer.

Next, we look at individual source-target pairs. For each
pair, we compare DCT Low (n = 128) with unconstrained
MIM in the non-targeted case with iterations = 1 and
iterations = 10. Results for all frequency configurations with
varied dimensionality are provided in the appendix. Figure 3
shows the transferability matrices for all source-target pairs,
where for each subplot, the row indices denote source models,
and the column indices denote target models. The value (and
associated color) in each gridcell represent the ASR for the
specified source-target pair. For Figure 4, the gridcell values
represent the relative difference in ASR between the target
model and the cleanly trained model (Cln)9, using the source
model of the corresponding row.

Comparing (a) to (b) and (c) to (d) in Figure 3, it is clear
that low frequency perturbations are much more effective
than unconstrained MIM against defended models. Specif-
ically, we can see that DCT Low is significantly more effec-
tive than unconstrained MIM against EnsAdv, and D1∼4 pro-
vide almost no additional robustness to EnsAdv when low

9The relative difference for the target model = (ASR on the target
model - ASR on Cln) / ASR on Cln.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3392



256 128 64 32
Dimensionality

0

20

40

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(A
SR

) Non-Targeted (1)

256 128 64 32
Dimensionality

0

25

50

75

100
Non-Targeted (10)

256 128 64 32
Dimensionality

0

20

40

60
Targeted (10)

Unconstrained (MIM)
DCT_Low

DCT_High
DCT_Random

DCT_Mid

(a) White-box attack on adversarially trained model, EnsAdv.

256 128 64 32
Dimensionality

0

20

40

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(A
SR

) Non-Targeted (1)

256 128 64 32
Dimensionality

0

25

50

75

100
Non-Targeted (10)

256 128 64 32
Dimensionality

0

20

40

60

Targeted (10)

Unconstrained (MIM)
DCT_Low

DCT_High
DCT_Random

DCT_Mid

(b) White-box attack on standard cleanly trained model, NasNet.
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(c) Grey-box attack on top-4 NeurIPS 2017 defenses prepended to
adversarially trained model.
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(d) Black-box attack on sources (Table 1) transferred to defenses (En-
sAdv + D1∼4)

Figure 2: Number of iterations in parentheses. Non-targeted with ε = 16/255, targeted with ε = 32/255.
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Figure 3: Transferability matrices with attack success rates (ASRs),
comparing unconstrained MIM with low frequency constrained
DCT Low (n = 128) in the non-targeted case. First row is with
iterations = 1, second is with iterations = 10. The column Cln is
NasNet, Adv is EnsAdv.
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Figure 4: Transferability matrices with attack relative difference in
ASR with the Cln model (first column). Rows and columns in each
subfigure is indexed in the same way as Figure 3.

frequency perturbations are applied.

Black-box Evaluation (Undefended)
However, we do observe that DCT Low does not improve
black-box transfer between undefended cleanly trained mod-
els, which can be seen by comparing indices (Cln 1,Cln) and
(Cln 3,Cln) between Figure 3 (a) and (b), as well as (c) and

(d). As discussed when comparing white-box performance
against cleanly trained and adversarially trained models, low
frequency constraints are not generally more effective, but
instead exploit the vulnerabilities in currently proposed de-
fenses.
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Original Unconstrained (MIM) Low_256 Low_128 Low_64 Low_32

Figure 5: Adversarial examples generated with `∞ ε = 16/255 distortion

Original Unconstrained (MIM) Low_256 Low_128 Low_64 Low_32

Figure 6: Adversarial examples generated with `∞ ε = 32/255 distortion

4.3 Effectiveness of Low Frequency on
Undefended Models v.s. Defended Models

In the last section, we showed that DCT Low is highly effec-
tive against adversarially trained models and top-performing
preprocessor-based defenses, in the white-box, grey-box and
black-box cases. However, low frequency does not help when
only cleanly trained models are involved, i.e. white-box on
clean models and black-box transfer between clean models.
To explain this phenomenon, we hypothesize that the state-
of-the-art ImageNet defenses considered here do not reduce
vulnerabilities within the low frequency subspace, and thus
DCT Low is roughly as effective against defended models as
against clean models, a property not seen when evaluating
with standard, unconstrained attacks.

This can be most clearly seen in Figure 4, which presents
the normalized difference between ASR on each of the tar-
get models with ASR on the cleanly trained model. The dif-
ference is consistently smaller for DCT Low than for uncon-
strained MIM, and nearly nonexistent when the perturbations
were generated against adversarially trained (defended) mod-
els (Adv 1,Adv 3). Thus, as discussed, defended models are

roughly as vulnerable as undefended models when encoun-
tered by low frequency perturbations.

Dim White (Adv) Black (Adv) Black (Cln)

32 54.6 38.1 14.4
24 48.1 33.1 14.4
16 46.4 28.8 14.4
8 37.0 25.4 14.4
4 26.5 20.0 14.0

Table 2: Non-targeted attack success rate (ASR) with iterations =
10 and ε = 8/255 of DCT Low in the white-box and black-box set-
tings (transfer from distinct adversarially trained and cleanly trained
models of the same architecture) against adversarially trained model
with 12.9% test error [Madry et al., 2017].

4.4 Effectiveness of Low Frequency on CIFAR-10
We test the effectiveness of low frequency perturbations
on the much lower-dimensional than ImageNet, CIFAR-10
dataset (d = 299 to d = 32), attacking the state-of-the-
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art adversarially trained model [Madry et al., 2017]. Ex-
periment results with 1000 test examples can be seen in Ta-
ble 2. Constraining the adversary used for training (non-
targeted PGD [Kurakin et al., 2016; Madry et al., 2017];
iterations = 10 and ε = 8/255) with DCT Low, and eval-
uating both in the white-box and black-box settings (transfer
from distinct adversarially trained and cleanly trained models
of the same architecture), we observe that dimensionality re-
duction only hurts performance. This suggests that the notion
of low frequency perturbations is not only constrained to the
computer vision domain, but also only induces problems for
robustness in the realm of high-dimensional natural images.

5 Discussion
Our experiments show that the results seen in recent work
on the effectiveness of constraining the attack space to low
frequency components [Guo et al., 2018; Zhou et al., 2018;
Sharma et al., 2018] are not due to generally reducing the size
of the attack search space. When evaluating against state-of-
the-art adversarially trained models and winning defense sub-
missions in the NeurIPS 2017 competition in the white-box,
grey-box, and black-box settings, significant improvements
are only yielded when low frequency components of the per-
turbation are preserved. Low frequency perturbations are so
effective that they render state-of-the-art ImageNet defenses
to be roughly as vulnerable as undefended, cleanly trained
models under attack.

However, we also noticed that low frequency perturbations
do not improve performance when defended models are not
involved, seen in evaluating white-box performance against
and black-box transfer between cleanly trained models. Low
frequency perturbations do not yield faster white-box attacks
on clean models, nor do they provide more effective transfer
between clean models.

Our results suggest that the state-of-the-art ImageNet de-
fenses, based on necessarily imperfect adversarial training,
only significantly reduce vulnerability outside of the low fre-
quency subspace, but not so much within. Against defenses,
low frequency perturbations are more effective than uncon-
strained ones since they exploit the vulnerabilities which pur-
portedly robust models share. Against undefended models,
constraining to a subspace of significantly reduced dimen-
sionality is unhelpful, since undefended models share vulner-
abilities beyond the low frequency subspace. Understanding
whether this observed vulnerability in defenses is caused by
an intrinsic difficulty to being robust in the low frequency
subspace, or simply due to the (adversarial) training proce-
dure rarely sampling from the low frequency region is an in-
teresting direction for further work.

Are Low frequency Perturbations Perceptible?
Our results show that the robustness of currently proposed
ImageNet defenses relies on the assumption that adversar-
ial perturbations are high frequency in nature. Though the
adversarial defense problem is not constrained to achieving
robustness to imperceptible perturbations, this is a reason-
able first step. Thus, in Figure 5, we visualize low frequency
constrained adversarial examples under the competition `∞-
norm constraint ε = 16/255. Though the perturbations do not

significantly change human perceptual judgement, e.g. the
top example still appears to be a standing woman, the pertur-
bations with n ≤ 128 are indeed perceptible.

Although it is well-known that `p-norms (in input space)
are far from metrics aligned with human perception, exem-
plified by their widespread use, it is still assumed that with a
small enough bound (e.g. `∞ ε = 16/255), the resulting ball
will constitute a subset of the imperceptible region. The fact
that low frequency perturbations are fairly visible challenges
this common belief. In addition, if the goal is robustness to
imperceptible perturbations, our study suggests this might be
achieved, without adversarial training, by relying on low fre-
quency components, yielding a much more computationally
practical training procedure. In all, we hope our study encour-
ages researchers to not only consider the frequency space,
but perceptual priors in general, when bounding perturbations
and proposing tractable, reliable defenses.
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