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Building Proteins in a Day:
Efficient 3D Molecular Structure Estimation with
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Abstract—Discovering the 3D atomic-resolution structure of molecules such as proteins and viruses is one of the foremost research
problems in biology and medicine. Electron Cryomicroscopy (cryo-EM) is a promising vision-based technique for structure estimation
which attempts to reconstruct 3D atomic structures from a large set of 2D transmission electron microscope images. This paper
presents a new Bayesian framework for cryo-EM structure estimation that builds on modern stochastic optimization techniques to allow
one to scale to very large datasets. We also introduce a novel Monte-Carlo technique that reduces the cost of evaluating the objective
function during optimization by over five orders of magnitude. The net result is an approach capable of estimating 3D molecular structure
from large-scale datasets in about a day on a single CPU workstation.
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1 INTRODUCTION

Discovering the 3D atomic-resolution structure of molecules
such as proteins and viruses is a fundamental open problem
in biology and medicine. Without exaggeration, the ability
to routinely determine the 3D structure of such molecules
would likely revolutionize the process of drug development,
and accelerate research into key biological processes. Electron
Cryomicroscopy (cryo-EM) is an emerging, vision-based ap-
proach to 3D macromolecular structure determination that is
applicable to medium to large-sized molecules in their native
state [10]. This is in contrast to X-ray crystallography which
requires a crystal of the target molecule that are often im-
possible to grow [39], or nuclear magnetic resonance (NMR)
spectroscopy, which is limited to relatively small molecules
[20].

The cryo-EM reconstruction task is to estimate the 3D
density of a target molecule from a large set of images
of the molecule (called particle images), obtained with a
transmission electron microscope. The problem is similar in
spirit to multi-view scene carving [8, 22] and to large-scale,
uncalibrated, multi-view reconstruction [2]. Like multi-view
scene carving, the goal is to estimate a dense 3D occupancy
representation of shape from a set of different views. But
unlike many approaches to scene carving, we do not assume
calibrated cameras, since the 3D poses of the molecule in
different images are unknown. Like uncalibrated, multi-view
reconstruction, we aim to use large numbers of uncalibrated
views to obtain high fidelity 3D reconstructions. But the low
signal-to-noise levels in cryo-EM particle images (often as
low as 0.05 [6]; see Fig. 1) and the different image formation
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Fig. 1: The goal is to reconstruct the 3D structure of
a molecule (right), at sub-nanometer scales, from a large
number of noisy, uncalibrated 2D projections obtained from
cryogenically frozen samples in an electron microscope (left).

model prevent the use of common feature matching techniques
to establish correspondences. Computed Tomography (CT)
[15, 18] uses a similar imaging model (orthographic integral
projection), however in CT the projection direction of each
image is known, whereas with cryo-EM the 3D pose for each
particle image is unknown.

Existing cryo-EM techniques (e.g., [11, 16, 42, 45]) suffer
from two key problems. First, without good initialization,
they converge to poor or incorrect solutions [17], often with
little indication that something went wrong. Second, they are
extremely slow, which limits the number of particles images
one can use to mitigate the effects of noise; e.g., the website
of the RELION package [1, 42] reports requiring two weeks
on 200 cores to process a dataset with 100,000 images. This
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problem is likely to worsen as high-throughput data collection
becomes more common, providing larger datasets, and better
hardware enables higher resolution images.

We introduce a framework for cryo-EM density estimation,
formulating the problem as one of stochastic optimization to
perform maximum-a-posteriori (MAP) estimation in a prob-
abilistic model. The approach is efficient, providing useful
low resolution density estimates in just a few hours. We also
show that our stochastic optimization technique is insensitive
to initialization, allowing the use of random initializations.
We further introduce a novel importance sampling scheme
that dramatically reduces the computational costs associated
with high resolution reconstruction. This leads to speedups of
100,000-fold or more, allowing structures to be determined
in a day on a modern CPU workstation. In addition, the
proposed framework is flexible, allowing parts of the model
to be changed and improved without impacting the overall
framework; e.g., we compare the use of three different priors.
To demonstrate the effectiveness of the method, we perform
reconstructions on two real datasets and one synthetic dataset.
A preliminary version of this work appeared in [9].

2 BACKGROUND AND RELATED WORK

Biological processes occur as the result of binding and chem-
ical interactions between molecules inside cells. The majority
of these molecules are protein structures, constructed from 20
different amino acid monomer building blocks. Each different
type of protein, coded in DNA, is a unique sequence of these
monomers joined into a chain. These chains fold into 3D
shapes during construction and it is this final 3D structure
that determines the function of the protein. Because function
depends on structure, discovering the structures of proteins
and other macromolecules is fundamental to studying and
understanding biological processes. It is also an important part
of discovering drugs that can inhibit or accelerate the action
of specific proteins involved in disease pathways.

Electron Cryomicroscopy (cryo-EM) provides a way to
determine this critical 3D atomic-resolution structural infor-
mation for many proteins and other macromolecules. In cryo-
EM, a purified solution of the target molecule is cryogenically
frozen into a thin (single molecule thick) film, and then imaged
with a transmission electron microscope. A large number of
such samples are obtained, each of which provides a micro-
graph containing hundreds of visible, individual molecules.
In a process known as particle picking, individual molecules
are detected, resulting in a stack of cropped particle images.
Particle picking is often done manually, however there have
been recent attempts to partially or fully automate the process
[23, 48]. Each particle image provides a noisy view of the
molecule, but with unknown pose relative to the molecule,
see Fig. 2 (right). The reconstruction task is to estimate the
3D electron density of the target molecule from the potentially
large set of particle images.

Traditional approaches to cryo-EM density estimation use
a form of iterative refinement (e.g., [11, 16, 45]). Based on
an initial estimate of the 3D density, they determine the best
matching alignment (i.e., 3D pose and image position) for each

particle image. A new density estimate is then constructed
using the Fourier Slice Theorem, much like Computed To-
mography [18]. In effect, using the 3D pose and position of
the particle in each particle image, the new density is found
through interpolation and averaging of the observed particle
images, often performed in the Fourier domain.

This approach is fundamentally limited in several ways.
Even if one knew the correct 3D molecular density, the
very low SNR makes it difficult to accurately identify the
correct pose and position for each particle image. This problem
is exacerbated when the initial density is inaccurate. As a
consequence, poor initializations result in estimated structures
that are either clearly wrong (see Fig. 11) or, worse, appear
plausible but are misleading in reality, yielding incorrect
3D structures [17]. Finally, and crucially for the case of
density estimation with many particle images, all data are
used at each refinement iteration, causing these methods to
be extremely slow. Mallick et al. [30] proposed an approach
which attempted to establish weak constraints on the relative
3D poses between different particle images. This was used to
initialize an iterative refinement algorithm. In contrast to such
approaches, ours does not require accurate initialization.

To avoid the need to estimate a single 3D pose and position
for each particle image, Bayesian approaches have been pro-
posed in which pose and position for each particle image are
treated as latent variables, and then marginalized numerically.
This approach was originally proposed by Sigworth [43] for
2D image alignment and later by Scheres et al. [41] for
alignment comprising 3D orientation and 2D image position. It
has since been used by Jaitly et al. [19], where batch, gradient-
based optimization was performed. Nevertheless, due to the
computational cost of marginalization, the method was only
applied to small numbers of class-average images obtained by
clustering, aligning and averaging individual particle images
according to their 2D appearance, to reduce noise and the
number of particle images used during the optimization.

The state-of-the-art RELION package [42] uses pose
marginalization and a batch Expectation-Maximization algo-
rithm for density estimation. This approach is, however, com-
putationally expensive. The website for the RELION software
reports that reconstruction from a dataset of 100,000 particle
images typically take two weeks on 200 cores [1]. We advocate
the use of a similar marginalized likelihood, but with stochastic
rather than batch optimization. This allows for more efficient
optimization, and for robustness to initialization. We further
introduce a novel importance sampling technique that dramat-
ically reduces the computational cost of the marginalization
when working at higher resolutions.

3 A FRAMEWORK FOR 3D DENSITY ESTIMA-
TION

Our formulation of the cryo-EM reconstruction problem com-
prises a probabilistic generative model of image formation,
given the 3D electron density of the molecule, where the
3D pose and 2D position of the particle in each image are
treated as unknown, latent variables. Stochastic optimization
is employed to cope with large-scale datasets, and importance
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Fig. 2: A generative image formation model in cryo-EM. The electron beam results in an orthographic integral projection of
the electron density of the specimen. This projection is modulated by the Contrast Transfer Function (CTF) and corrupted with
noise. The images pictured here showcase the low SNR typical in cryo-EM. The zeros in the CTF (which completely destroy
some spatial information) make estimation particularly challenging, however their locations vary as a function of microscope
parameters. These are set differently across particle images in order to mitigate this problem. Particle images and density from
[24].

sampling is used to efficiently marginalize over the unknown
pose and position for each particle image.

3.1 Generative Model

This section introduces the key elements of a generative model
of image formation for cryo-EM. Details of the formulation
are provided in the appendix.

A cryo-EM particle image is assumed to be an orthogonal,
integral projection of the 3D target density, V . The 3D pose
of the particle in the image, R ∈ SO(3), is unknown a
priori, as is the 2D position of the particle within the image,
t ∈ R2. The projection is corrupted by blur and other
microscope aberrations, analogous to the effects of defocus in
a conventional light camera. Such distortions are characterized
by modulation with a contrast transfer function (CTF) in
the Fourier domain, denoted ĉ(ω; θ) where ω ≡ (ω1, ω2)

T

represents 2D Fourier coordinates, and θ denotes the CTF
parameters. Figure 2 depicts a typical CTF, with periodic phase
reversals that imply, among other things, that particle images
are not strictly positive. Finally the image is corrupted with
additive noise, clearly visible in Fig. 2. Such large amounts
of noise are primarily due to very low exposures, necessitated
by the sensitive nature of biological specimens. The noise is
modelled as IID and Gaussian.

In cryo-EM, largely for computational convenience, it is
common to express the generative model in the Fourier domain
where the key elements have a particularly simple form. The
effect of the CTF reduces to modulation in the Fourier domain.
Image translation corresponds to a simple phase shift in the
Fourier domain. And the Fourier Slice Theorem specifies that
the Fourier transform of the integral projection of a rotated
object yields a slice through the 3D spectrum of the object,

in a plane normal to the projection direction. As formulated
in the appendix, the generative model in the Fourier domain
is given by:

Î(ω) = ĉ(ω; θ) e−ι2πωTt V̂ (ω1n1+ω2n2) + ν̂(ω) (1)

where Î(ω) denotes 2D Fourier spectrum of the image,
e−ι2πωTt is the phase shift induced by the image translation
(with ι2 = −1), V̂ is the 3D Fourier spectrum of the target
density V , and where n1 and n2 are orthogonal unit vectors
that span the plane normal to the viewing direction d. These
vectors are given by the rows of the rotation matrix for the
3D pose, i.e., R = [n1,n2,d]

T. Finally, because the Fourier
transform is a linear, unitary transform, the additive, Gaussian
image noise remains Gaussian and white in the Fourier domain
up to Hermitian symmetry. Given IID mean-zero Gaussian
noise with variance σ2, the noise in the Fourier coefficients
is mean-zero, independent, and complex normal with variance
2σ2, written ν̂(ω) ∼ CN (0, 2σ2).

One key benefit of expressing the generative model and
likelihood in the Fourier domain is the ease with which we
can formulate the estimation of low-resolution structures. This
is accomplished straightforwardly by only considering the
low-order Fourier terms of the observed images. Computa-
tional savings stem from the fact that the number of Fourier
coefficients increases quadratically with frequency. The low
frequency coefficients also have higher SNR, due in part to
CTF attenuation of higher frequencies.

3.2 Marginalized Likelihood
In practice, we discretize the target density V into 3D grid,
V , with density represented at each of D3 voxels, the discrete
Fourier transform (DFT) of which is denoted V̂ . Similarly, the
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observed particle images have D2 pixels, with 2D DFT, Î,
defined on a discrete set of frequencies, ω ∈ Ω. Given the
white, complex normal noise model, the joint likelihood over
the image Fourier coefficients up to a maximum radius in the
frequency domain, ω∗, is given by

p(Î | θ,R, t,V, σ2) ∝
∏
ω∈Ω

||ω||<ω∗

CN (Î[ω];µ(ω), 2σ2) (2)

where Î[ω] denotes the image Fourier coefficient at frequency
ω, and µ(ω) = ĉ(ω; θ) e−ι2πω

Tt V̂(ω1n1+ω2n2). Computing
the mean requires interpolation of the discrete 3D Fourier
coefficients and we use trilinear interpolation with premul-
tiplication. See the appendix and [31] for more details.

The 3D pose, R ∈ SO(3), and shift, t ∈ R2, of each
particle image are unknown and treated as latent variables that
are marginalized [41, 43]. Assuming R and t are independent
of each other and the density V , one obtains

p(Î | θ,V, σ2) =

∫
R2

∫
SO(3)

p(Î | θ,R, t,V, σ2) p(R) p(t) dR dt

(3)
where p(R) is a prior over 3D poses, and p(t) is a prior over
translations. In general, nothing is known about the projection
direction so p(R) is assumed to be uniform. Particles are
picked to be close to the center of each image, so p(t) is
chosen to be a broad Gaussian distribution centered in the
image.

The double integral in Eq. (3) is not analytically tractable, so
numerical quadrature is used. To perform quadrature over 3D
pose, it is convenient to use the subgroup structure of SO(3)
and parameterize the rotation matrix R in terms of the viewing
direction d ∈ S and an in-plane rotation angle ψ ∈ [0, 2π).
To generate a valid quadrature scheme over SO(3), it suffices
to combine quadrature schemes over S and [0, 2π) [14, 28].
The conditional probability of an image (i.e., the likelihood)
p(Î | θ,V, σ2) is then approximated as a weighted sum

Md∑
j=1

wd
j

Mψ∑
k=1

wψk

Mt∑
`=1

wt
` p(Î|θ,Rj,k, t`,V, σ2) p(Rj,k)p(t`)

(4)
where Rj,k ≡ R(dj , ψk) is the rotation matrix with viewing
direction dj and inplane rotation ψk. Further, {(dj , wd

j )}Md
j=1

are weighted quadrature points over S, {(ψk, wψk )}Mψ

k=1 are
weighted quadrature points over [0, 2π) and {(t`, wt

`)}
Mt

`=1 are
weighted quadrature points over R2.

To generate quadrature points over S we use the approach
described in [40], which generates a requested number of
points Md which (approximately) uniformly cover S and then
use wd = 4π

Md
. Quadrature points over [0, 2π) are generated

uniformly, so wψ = 2π
Mψ

. Finally, due to the Gaussian form
of p(t), Gauss-Hermite quadrature over R2 is used where the
weights wt are determined by the quadrature scheme.

The accuracy of the quadrature scheme, and consequently
the values of Md, Mψ and Mt, are set based on ω∗, the
specified maximum frequency considered. The use of higher
frequencies requires finer quadrature sampling. Specifically, if
α = 1

2 arccos (Dω∗)2−1
(Dω∗)2+1 is the angle between discrete wave

numbers in Fourier space at a radius of ω∗, then we seek a
quadrature scheme which has a maximum angular spacing of
approximately α. To achieve this we use Md = ( 3.6

α )2 [40] and
Mψ = 2π

α . For quadrature in the plane, we use Mt = (Dω∗)
2

which corresponds to spacing quadrature points at one full
period at frequency ω∗.

3.3 Stochastic Optimization

Given a set of K particle images, each with CTF parameters
and noise levels, D = {(Îi, θi, σ2

i )}Ki=1, and assuming condi-
tional independence of the images, the posterior probability of
a density V is

p(V|D) ∝ p(V)

K∏
i=1

p(Îi | θi,V, σ2
i ) , (5)

where p(V) is a prior over 3D molecular densities. Several
choices of prior are explored below, but we found that a sim-
ple independent exponential prior worked well. Specifically,
p(V) =

∏D3

i=1 λe
−λVi where Vi is the density of the ith voxel

and λ is the inverse scale parameter. Other choices of prior
are possible and we explore this later.

Estimating the density corresponds to finding V that maxi-
mizes the posterior in Eq. (5). In doing so, we also constrain
the density at each voxel to be positive, as negative density
is physically unrealistic. Them taking the negative log and
dropping constant factors, the optimization problem becomes
arg minV∈RD3

+
f(V),

f(V) = − log p(V)−
K∑
i=1

log p(Îi | θi,V, σ2
i ) . (6)

Optimizing Eq. (6) directly is costly due to the marginalization
in Eq. (4) as well as the large number (K) of particle
images in a typical dataset. To address these challenges the
following sections describe our use of stochastic optimization
and importance sampling.

3.3.1 Stochastic Average Gradients
To efficiently cope with the large number of particle images
in a typical dataset, we advocate the use of stochastic op-
timization. Stochastic optimization methods exploit the large
amount of redundancy in most datasets by only considering
subsets of data (i.e., images) at each iteration. There are many
such methods, ranging from simple stochastic gradient descent
with momentum [34, 35, 44] to more complex methods such
as Natural Gradient methods [4, 5, 25, 26] and Hessian-free
optimization [32].

We have explored many of these methods for 3D recon-
struction [36]. However, here we use Stochastic Average
Gradient Descent (SAGD) [27] which has several important
properties. First, it is effectively self-tuning, using a line-
search to determine and adapt the learning rate. This is
particularly important, as many methods require significant
manual tuning for new objective functions, or datasets. Further,
it is specifically designed for the finite dataset case allowing
for faster convergence. Finally, SAGD explicitly produces an
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estimate of the full gradient over the entire dataset, providing
a natural way to assess convergence.

Our goal, as stated above is to minimize the negative log
posterior in Eq. (6), i.e.,

f(V) = − log p(V)−
K∑
i=1

log p(Îi|θi,V, σ2
i )

=

K∑
i=1

[
− 1

K
log p(V)− log p(Îi|θi,V, σ2

i )

]

=

K∑
i=1

fi(V) . (7)

At each iteration τ , SAGD [27] selects a random particle
image, indexed by iτ , the corresponding objective for which
is the log likelihood, denoted, fiτ (V). Also, let the gradient
of the objective with respect to the 3D density be denoted
giτ (V) ≡ ∇Vfiτ (V). As explained in the appendix, the
objective is continuous and straightforwardly differentiable.

SAGD then computes an update given by

Vτ+1 = Vτ −
ε

L

K∑
i=1

[
dVτi −

1

K

∂

∂V
log p(V)

]
, (8)

where ε is a base learning rate, L is a Lipschitz constant of
the gradient gkτ (V) and

dVτi =

{
giτ (Vτ ) i = iτ

dVτ−1
i otherwise

(9)

That is, at iteration τ we only compute the gradient for data
point iτ , but the gradient update at iteration τ also uses the
most recently computed gradients for all other data points.

In practice, the sum in Eq. (8) is not computed at each
iteration. Rather, a running total is maintained and updated as
follows:

ḡτ =

K∑
i=1

dVτi

ḡτ+1 = ḡτ − dVτiτ + giτ (Vτ )

Altogether, this allows for SAGD to take many steps and make
fast progress before a batch optimization algorithm would be
able to take even a single step. Further, rather than selecting a
single data point at each iteration, we select a subset of data
points (minibatches) and compute the gradient for the sum
of the objective fi over the entire minibatch. This allows for
computational parallelization and helps to reduce the memory
required by SAGD. For the experiments below, we used a
minibatch size of 200 particle images.

3.3.2 SAGD Parameters
The SAGD algorithm requires a Lipschitz constant L which
is not generally known. Instead it is estimated using a line
search algorithm where an initial value of L is increased until
the instantiated Lipschitz condition f(V)− f(V −L−1dV) <
‖dV‖2

2L is met. The line search for the Lipschitz constant L is
only performed once every 20 iterations. More sophisticated
line search could be performed if desired. A good initial value

Algorithm 1 SAGD
Initialize V and L
Initialize ḡ← 0
Initialize dVk ← 0 for all k = 1..K
for τ = 1..τmax do

Select data subset kτ
Compute objective gradient gkτ (V)
ḡ← ḡ − dVkτ + gkτ (V)
dVkτ ← gkτ (V)
V ← V − ε

L

[
ḡ − ∂

∂V log p(V)
]

if mod(τ ,20) == 0 then
Perform line search
while fkτ (V)− fkτ (V − L−1dVkτ ) <

‖dVkτ ‖
2

2L
do

L← 2L
else

L← 2−
1

150L

of L is found using a bisection search where the upper bound
is the smallest L found so far to satisfy the condition and
the lower bound is the largest L found so far which fails the
condition. In between line searches, L is gradually decreased
to try to take larger steps as described in [27].

Like other stochastic optimization algorithms, convergence
of SAGD is only guaranteed for convex functions. In practice,
while the objective function defined here is non-convex, we
find good performance regardless, consistent with myriad other
applications of stochastic optimization. In the convex case,
convergence is only assured for values of ε ≤ 1

16 [27].
However we found larger values at early iterations to be
beneficial, and consequently use ε = max( 1

16 , 2
1−bτ/150c).

Finally, to enforce the positivity of density, negative values of
V are truncated to zero after each iteration. A summary of the
entire SAGD algorithm is provided in Algorithm (1).

3.4 Importance Sampling

While stochastic optimization allows us to scale to large num-
bers of images, the cost of computing the required gradient
for each image remains high due to marginalization over 3D
orientations and 2D shifts in Eq. (4). Intuitively, one could
consider randomly selecting a subset of the terms in Eq. (4)
and using this as an approximation. This idea is formalized
by importance sampling (IS) which allows for an efficient and
accurate approximation of the discrete sums in Eq. (4).1 (For
a review of importance sampling, see [46].)

To formulate importance sampling, we first re-express the
inner sum from Eq. (4) as follows

φd,ψj,k =

Mt∑
`=1

wt
` pj,k,` =

Mt∑
`=1

qt`

(
wt
`pj,k,`
qt`

)
(10)

where pj,k,` = p(Î|θ,Rj,k, t`, V̂) p(Rj,k) p(t`) and qt ≡
(qt1, . . . , q

t
Mt

)T is the parameter vector of a multinomial im-
portance distribution such that

∑Mt

`=1 q
t
` = 1 and qt` > 0.

The domain of qt corresponds to the set of quadrature points
in Eq. (4). Then, φd,ψj,k can be thought of as the expected

1. One can also apply importance sampling directly to the continuous
integrals in Eq. (3) but it can be computationally advantageous to have a
fixed set of projections and shifts which can be reused across particle images.



PREPRINT. FINAL VERSION AVAILABLE IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI) 6

value E`[
wt
`pj,k,`
qt`

], where ` is a random variable distributed
according to qt. If a set of Nt �Mt random indexes, It, are
drawn according to qt, then

φd,ψj,k ≈
1

Nt

∑
`∈It

wt
`pj,`
qt`

. (11)

Thus, we can approximate φd,ψj,k by drawing samples according
to the importance distribution qt and computing the average.

Using this approximation, Eq. (4) becomes

p(Î|θ, V̂) ≈
Md∑
j=1

wd
j

Mψ∑
k=1

wψk
1

Nt

(∑
`∈It

wt
`pj,k,`
qt`

)
. (12)

Importance sampling can be similarly used for the other
summations:

p(Î|θ, V̂) ≈
∑
j∈Id

∑
k∈Iψ

∑
`∈It

wd
j w

ψ
kw

t
`

NdNψNtqdj q
ψ
k q

t
`

pj,k,` (13)

where Id and Iψ are samples drawn from the importance dis-
tributions qd = (qd1 , . . . , q

d
Md

)T and qψ = (qψ1 , . . . , q
ψ
Mψ

)T .
The accuracy of the approximation in Eqs. (13) to (4) is

determined in part by the number of samples used, with the
error going to zero as the number of samples increases. For
Nd we use s0s(qd) samples where s(q) =

(∑
` q

2
`

)−1
is

the effective sample size [12] and s0 is a scaling factor. This
choice ensures that when the importance distribution is diffuse,
more samples are used.

3.4.1 Importance Distribution
As long as the importance distributions (i.e., qt, qd and
qψ) are non-zero over their respective domains, the resulting
weighted samples are properly weighted and the estimates
provided by IS are unbiased. Nevertheless, their estimator
variance can arbitrarily poor if the importance distributions
are not well chosen. In what follows we explain our choice of
importance distributions, exploiting the iterative nature of the
of the algorithm, while ensuring properly weighted samples.

To begin, note that one natural choice for effective impor-
tance distributions would be based on the marginal sums

φdj =

Mψ∑
k=1

Mt∑
`=1

wψkw
t
`pj,k,` (14)

φψk =

Md∑
j=1

Mt∑
`=1

wd
j w

t
`pj,k,` (15)

φt` =

Md∑
j=1

Mψ∑
k=1

wd
j w

ψ
k pj,k,` . (16)

These sums essentially tell us how significant a particular
viewing direction, inplane rotation, or inplane shift is for
the quadrature, and thus how strongly we should sample it.
Unfortunately computing these sums requires as much work
as computing Eq. (4) directly.

To avoid such expense we make two observations. First,
once the rough shape of the structure has been determined,
the marginal sums do not change dramatically from iteration to
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Fig. 3: The KL divergence between the values of φd at
the current and previous epochs on the thermus dataset. As
optimization progresses, the coarse structure of the molecule
is quickly determined, and the KL divergence becomes very
small by the third epoch. This indicates that the significantly
likely poses for each image have stabilized, and so importance
sampling can focus quadrature on these regions preferentially,
providing significant speedups.

iteration of stochastic optimization. Intuitively, once a structure
has been coarsely determined, the correct pose and shift for
a particular image will not change much as the 3D structure
is further updated. This is evident in Fig. 3, where, by the
third epoch the KL divergence of φd from one epoch to
the next is extremely small. This suggests that φ from the
previous epoch may be useful in constructing the importance
distribution at the current epoch. Second, these distributions
can also be approximated by importance sampling; i.e.,

φ̃dj =
∑
k∈Iψ

∑
`∈It

wψkw
t
`pj,k,`

NψNtq
ψ
k q

t
`

(17)

φ̃ψk =
∑
j∈Id

∑
`∈It

wd
j w

t
`pj,k,`

NdNtqdj q
t
`

(18)

φ̃t` =
∑
j∈Id

∑
k∈Iψ

wd
j w

ψ
k pj,k,`

NdNψqdj q
ψ
k

. (19)

We use these quantities, computed from the previous itera-
tions, to construct the importance distributions at the current
iteration. We further anneal these distributions to smooth out
sharp peaks.

The actual importance distributions we use are two-
component mixture models, comprising a convex combination
of a uniform distribution and the approximate marginals from
the last epoch. The uniform distribution helps to ensure that
the importance distribution is non-zero everywhere. In effect,
it encourages search over the entire space, while the other
component of the mixture focuses search in regions that
previously had high probability. Dropping the superscripts for
clarity, let I be the set of samples evaluated at the previous
iteration and φi be the computed values for i ∈ I. Then the
importance distribution used at the current iteration is

qj = (1− α)Z−1
∑
i∈I

φ̃
1/T
i Ki,j + αψ (20)

where ψ = M−1 is the uniform distribution, α is the mixing
proportion with the uniform distribution, T is an annealing
parameter, Ki,j is a kernel evaluated between quadrature
points i and j, and Z =

∑
j

∑
i∈I φ̃

1/T
i Ki,j is a normalization
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GroEL-GroES [47] Thermus ATPase [24] Bovine ATPase [38]

Fig. 4: Previously published structures for the datasets used
in this paper.

constant. The values for α = max(0.05, 2−0.25bτprev/50c)
and T = max(1.25, 210.0/bτprev/50c) are set so that at early
iterations, when the underlying density is changing, we rely
more heavily on the uniform ψ.

The kernel K is used to diffuse probability around quadra-
ture points as neighbouring points are more likely to be
useful. It also enables smooth transitions between resolutions
of quadrature points. Specifically, we use a squared exponen-
tial kernel for the shifts and an exponential kernel for the
projection directions and in-plane rotations:

Kd(di,dj) = exp(κdd
T
i dj) (21)

Kψ(ψi, ψj) = exp(κψ cos∠(ψi, ψj)) (22)
Kt(ti, tj) = exp(−κt‖ti − tj‖2) (23)

where κd = log 4
1−cos rd

, κψ = log 2
1−cos rψ

, and κt = 1
2r2t

are kernel
bandwidth parameters and ∠(ψi, ψj) is the angular difference
between ψi and ψj . The bandwidth parameters are set based
on the resolution of the quadrature schemes where rd and rψ
are the angular distances between projection directions and
in-plane rotations respectively and rt is the distance between
translation quadrature points.

4 EXPERIMENTS

The proposed method was applied to two experimental and
one synthetic dataset. All experiments were initialized us-
ing randomly generated densities. The maximum frequency
considered was gradually increased from a relatively low fre-
quency to near the Nyquist rate. Optimizations were run until
the maximum resolution was reached and the average error
on a held-out set of 200 particle images stopped improving,
around 5000 iterations. In principle, higher resolution could be
achieved but for this work the focus was on speed to achieve
comparable resolution to existing published structures.

4.1 Datasets
The first dataset was ATP synthase from the thermus ther-
mophilus bacteria, a large transmembrane protein complex.
Transmembrane proteins are an important class of targets
for cryo-EM. They constitute nearly 27% of human proteins
[3] and play a crucial role in many diseases and cellular
processes, yet they constitute less than 1% of the solved
structures to date due to the fundamental limitations of other

structure determination methods, notable, x-ray crystalography
and NMR spectroscopy [13].

The thermus dataset contained 46, 105 particle images,
provided by Lau and Rubinstein [24]. The high resolution
structure from [24] and six sample images are shown in
Fig. 2. The second dataset was bovine mitochondrial ATP
synthase, containing 5, 984 particle images, and provide by
Rubinstein et al. [38], For both datasets the particle images
comprised 128 × 128 square pixels, the sides of which were
2.8Å in length (i.e., 0.28nm). The CTF information for each
particle image was provided, having been estimated previously
using CTFFIND3 [33]. The noise level, σ, was estimated by
computing the standard deviation of pixels near the boundary
of the particle images.

To demonstrate the ability of our method to handle a
different type of structure, a third dataset was synthesized
by taking an existing structure from the Protein Data Bank2,
GroEL-GroES-(ADP)7 [47], and generating 50, 000 random
projections according to the generative model (see Fig. 5(top
left)). The CTF, signal-to-noise level, image and pixel sizes,
along with other parameters, were set to plausible values
based on the thermus dataset values. This structure, as well as
previously solved structures of the bovine and thermus ATP
synthase molecules are depicted in Fig. 4. GroEL-GroES was
selected because it is structurally unlike either of the bovine
or thermus ATP synthase molecules.

4.2 Estimated Structures
For these datasets, structure estimation begins with a maxi-
mum frequency ω∗ that corresponds to a wavelength of 40Å.
The maximum frequency was then increased gradually, yield-
ing finer resolution structures. At iteration τ , the maximum
frequency, in cycles per Angstrom, was ω∗ = min(0.11, 0.02+
0.005bτ/150c). The maximum frequency at the final iteration
is 1/9Å, close to the Nyquist frequency of 1/5.6Å for these
datasets. Importantly, a frequency of 1/9Å corresponds to the
resolution of the best published results for the thermus dataset
used here [24].

Results on these datasets are shown in Fig. 5. Sample
particle images are shown, along with an iso-surface and slices
of the final estimated density. Computing these reconstructions
took less than 24 hours in all cases. Further, even at early
iterations, reasonable structures are available. Fig. 6 shows the
estimated structure for the thermus dataset at different stages
during optimization. Notably, after just one hour (during which
only a fraction of the full dataset is seen), the low-resolution
shape of the structure has already been determined.

4.3 Quantitative Evaluation
Traditionally, the cryo-EM field has used the Fourier Shell
Correlation (FSC) to measure the similarity between two 3D
densities. FSC is the normalized cross-correlation, computed
using the 3D Fourier coefficients of the density as a function
of frequency, i.e., measured in shells of fixed frequency
magnitude. This produces a function of frequency that is

2. Structure 1AON from http://pdb.org

http://pdb.org
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Fig. 5: Sample particle images (left), an isosurface of the reconstructed 3D density (middle) and slices through the 3D density
with colour indicating relative density (right) for GroEL-GroES (top), thermus thermophilus ATPase (middle) and bovine
mitochondrial ATPase (bottom). Reconstructions took a day or less on a single 16 core workstation.

typically near one for low frequency shells and decreases for
higher frequency shells, as similarity between the densities
decreases. The point at which the correlation drops below
half is nominally defined as the resolution to which to two
densities match. FSC requires that the two densities being
compared are aligned. If this is not the case, we can compute
an optimal alignment by maximizing the (overall) normalized
cross-correlation using a simplex based search.

Ground-truth is rarely available for cryo-EM which makes
it difficult to assess the accuracy of estimated densities.
However, because the GroEL-GroES dataset is synthetic, we
can compare against the ground truth structure to determine
whether the estimated structure is accurate. The FSC curve for
the GroEL-GroES dataset is show in Fig. 7. Here it can be
seen that the estimated resolution of 9.1Å is consistent with the
highest frequency of coefficients that were considered, which
was 9Å. Power in the solved structures above this frequency
is due to the influence of non-negativity and the prior.

4.4 Importance Sampling

To validate our importance sampling approach we evaluated
the error made in computing log p(Î|θ, V̂) using IS against
computing the exact sum in Eq. (4) without IS. This error is
plotted in Fig. 8, along with the fraction of quadrature points
used at various values of s0. Based on these plots we selected
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Fig. 7: Fourier Shell Correlation between the estimated
structure and ground truth for GroEL/GroES. The estimated
resolution of 9.1Å is consistent with the highest frequen-
cies considered, i.e., the largest value of ω∗ (in cycles per
Anstrom).

a factor of s0 = 10 for all experiments as a trade-off between
accuracy and speed achieving a relative error of less then 0.1%
while still providing significant speedups.

To see just how much of a speedup importance sampling
provides in practice, Fig. 9 shows the fraction of quadrature
points evaluated during optimization. Initially all quadrature
points are evaluated, but as optimization progresses, and
the density becomes better determined, importance sampling
yields larger and larger speedups. At the full resolution, impor-
tance sampling provided more than a 100,000-fold speedup.

No prior knowledge of pose was assumed. Nevertheless,
for many particles, certain views are more likely than others.
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Initial 10 minutes 1 hour 6 hours 12 hours 24 hours

Fig. 6: Reconstruction progress at several times during a run of our method. Top row thermus, middle row bovine, and
bottom row GroEL-GroES datasets. Initializations are generated randomly as a sum of spheres. Note that within an hour of
computation, the gross structure is already well determined, after which fine details emerge gradually. Video sequences of
reconstruction progress can be found at http://cs.toronto.edu/∼alipunjani/pami16cryoem
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Fig. 8: Relative error (blue, left axis) and fraction of
total quadrature points (red, right axis) used in computing
log p(Î|θ, V̂) as a function of the ESS scaling factor, s0

(horizontal axis), on log-log axes.. Error bars represent the
variance over a population of 100 individual images.

This fact can be seen by examining the average importance
distribution for the thermus dataset, shown in Fig. 10 for
a typical iteration. Here, the distribution of views forms an
equatorial belt around the particle, while top or bottom views
are rarely if ever seen. This phenomenon is well known for
particles like these (e.g., see [38] where this knowledge was
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Fig. 9: The fraction of naive quadrature points evaluated on
average during optimization, when using importance sampling.
As resolution increases, the speedup obtained increases signif-
icantly yielding more than a 100,000 fold speedup.

used directly in estimation), validating our sampling approach
and suggesting a use of this average importance distribution
to supplement the uniform component of the mixture model
importance distribution in Eq. (20).

4.5 Sensitivity to Initialization
To demonstrate the robustness of our method to initialization
15 different random initial densities were generated and used
with the thermus dataset. Qualitatively, we find that the re-
sulting structures from all runs are remarkably similar to one

http://cs.toronto.edu/~alipunjani/pami16cryoem
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Fig. 10: A Winkel-Tripel projection of the importance dis-
tribution of view directions, qd, averaged over the thermus
dataset at a typical iteration. Clearly visible is the equatorial
belt of likely views, while axis aligned views (those on the
top or bottom of the plot) are rarely seen.

Projection Matching RELION Proposed Approach

Fig. 11: Baseline comparisons to two existing standard meth-
ods. Iterative projection matching and reconstruction (left) and
RELION [42] (middle). The proposed method (right) is able
to determine the correct structure while projection matching
and RELION both become trapped in poor local optima. See
Fig. 11(middle) for comparison. All methods were given the
same random initialization.

another. To assess quantitative similarity, the aligned FSC was
computed between all pairs of the 15 final density maps. As
mentioned above, FSC curves measure consistency of density
maps as a function of resolution. Figure 12 shows FSC mean
and standard deviation for the 105 pairs of density maps.
The curve indicates that the densities are extremely close
in structure all the way down to a resolution of 12Å on
average, which is approximately half the Nyquist frequency,
meaning that the results are consistent to approximately 2
pixels. This indicates that the different random initializations
are effectively converging to very similar solutions.

To compare this method to others, especially its sensitivity
to initialization, we selected two well-known, state-of-the-art
approaches for structure determination. The first is a stan-
dard iterative projection matching scheme where images are
matched to an initial density through a global cross-correlation
search (e.g., as in [16]). The density is then reconstructed
based on these fixed orientations and this process is iterated.
The second benchmark is the RELION package described in
[42]. It uses a similar marginalized model as our method but
with a batch EM algorithm to perform optimization.

We used publicly available code3 for both of these ap-
proaches on the thermus dataset and initialized using the same
randomly generated density. We ran each method for a number

3. For projection matching we used the code from https://sites.google.com/
site/rubinsteingroup/home

Initialization Result
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Fig. 12: Comparison of multiple restarts with the same Ther-
mus data using different randomly generated initializations.
Top: Example initializations and results from two individual
runs. Bottom: Average Fourier Shell Correlation between the
15 independent runs. On average, the results were consistent to
12Å which is approximately twice wavelength of the Nyquist
frequency, i.e., the structures are consistent to approximately
2 pixels. This demonstrates the robustness of the method to
random initializations.

of iterations roughly equivalent in terms of CPU time to
the 5000 iterations used by our method. Fig. 11 shows the
results. Both approaches have clearly determined an incorrect
structure, and appear to have converged to a local minimum
as no further progress was made beyond this point.

We note that both projection matching and RELION have
been used successfully for reconstruction by others, and are
not recommended to be used without a good initialization.
Our results support this recommendation as neither approach
converges from random initializations. In practice, it is difficult
to construct good initializations for molecules of unknown
shape [17], giving the proposed method a significant advan-
tage. However, while it has not been seen in practice with
our method, it is still possible that poor local optima could
be found as the optimization problem is non-convex and
potentially has many local optima.

4.6 Comparing Priors
The above results used an exponential prior for the density at
the voxels of Vi, however the presented framework allows for

https://sites.google.com/site/rubinsteingroup/home
https://sites.google.com/site/rubinsteingroup/home
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Fig. 13: Slices through the reconstructions with (from left to
right) uniform, CAR and exponential priors. The exponential
prior does the best job of suppressing noise in the background
without oversmoothing fine details within the structure. Blue
corresponds to small or zero density and red corresponds to
high density.

any continuous and differentiable prior. To demonstrate this,
we explored two other priors, namely, an improper (uniform)
prior, p(Vi) ∝ 1, and a conditionally autoregressive (CAR)
prior [7] p(Vi|V−i) = N (Vi| 1

26

∑
j∈Nbhd(i) Vj , σ

2
CAR) which

is a smoothness prior biasing each voxel towards the mean
of its 26 immediate neighbours Nbhd(i). Slices through the
resulting densities on thermus under these priors are shown in
Fig. 13. With an improper uniform prior (Fig. 13(left), there
is significant noise visible in the background. This noise is
somewhat suppressed with the CAR prior (Fig. 13(middle)
however the best results are clearly obtained using the expo-
nential prior which suppresses the background noise without
smoothing out internal details.

4.7 Limitations

Beyond the work described in this paper, there remain a
number of unresolved questions for future research. While an
exponential prior was found to be effective, more sophisticated
priors could be explored or learned, potentially enabling higher
resolution estimation without the need to collect more data and
providing a kind of of atomic-scale super-resolution.

As noted in the appendix, the Gaussian approximation to the
Poisson noise model is well motivated, however experimental
data suggests that there are correlations in the noise. This
suggests that a coloured noise model may be yield even better
results. Further, some datasets exhibit crowding, where there
are structured outliers in particle images that are not well
captured in the existing noise model.

The optimization problem is challenging, and, while SAGD
was successful here, it is likely that more efficient stochastic
optimization methods are possible which exploit the problem
structure to a greater degree. This will likely be critical in
recovering even higher resolution structures as the Hessian
matrix can be shown to become poorly conditioned, meaning
that first-order optimization methods will likely struggle to
reach the optimal solution.

Finally, validation and resolution assessment remains a
significant open problem [17]. Unfortunately, the nature of the
problem is such that there is no ground truth for novel struc-
tures. Existing validation techniques have limitations (e.g.,
gold-standard FSC) or are experimentally cumbersome (e.g.,
tilt-pair tests) and new tools for validation are necessary.

5 CONCLUSIONS
This paper introduces a framework for efficient 3D molecu-
lar reconstruction from cryo-EM images. It comprises MAP
estimation of 3D structure with a generative model, marginal-
ization over 3D particle poses, and optimization using SAGD.
A novel importance sampling scheme was used to reduce the
computational cost of marginalization. The resulting approach
can be applied to large stacks of cryo-EM images, providing
high resolution reconstructions in a day on a 16-core worksta-
tion, starting from a random initialization.

The problem of density estimation for cryo-EM is a fascinat-
ing vision problem. The low SNR in particle images makes it
remarkable that any molecular structure can be estimated, let
alone the high resolution densities which are now common.
Recent research [29] suggests that the combination of new
techniques and new sensors may facilitate atomic resolution
reconstructions for arbitrary molecules. This development will
be ground-breaking in both biological and medical research.

In order to encourage others to work on this problem, source
code is available from the authors’ website.
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APPENDIX A
FORMULATION OF GENERATIVE MODEL

The physics of image formation in a transmission electron
microscope are described by the Schrödinger equation of
quantum mechanics. This partial differential equation would
be prohibitively expensive and difficult to work with directly.
However, due to the thin nature of samples used in cryo-EM,
the weak phase object approximation is widely used which
results in the linear image formation model we describe below.
For more details on the physics of the microscope and this
approximation we refer the reader to [21].

In the weak phase object approximation the electron micro-
scope takes an integral projection of a rotated, translated 3D
molecular density. Let V (y) be the 3D density at y ∈ R3,
and let the transformation from the particle coordinate frame
to the microscope coordinate frame be

x3 = Ry + t3 (24)

where R and t3 ≡ (t1, t2, t3)
T are the 3D rotation and trans-

lation between coordinate frames, and x3 ≡ (x1, x2, x3)
T.

Without loss of generality we assume the microscope projec-
tion is parallel to the x3-axis, and we express the rotation as
RT = [n1,n2,d], so the projection direction in the particle
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frame is d. The integral projection, onto x ≡ (x1, x2)
T, is

then given by

P (x; R, t) =

∫
V (RT(x3 − t3)) dx3 . (25)

In addition to the rotation, the orthgonal projection only
depends critically on the two components of translation in the
plane normal to the projection direction d, i.e., t ≡ (t1, t2).

According to the well-known Fourier Slice Theorem, the
Fourier transform of an orthogonal projection of V is equiva-
lent to a planar slice through the 3D Fourier spectrum of V .
That is, the 2D transform of P (x; R, t), denoted P̂ (ω; R, t),
with ω ≡ (ω1, ω2)

T, can be written as

P̂ (ω;R, t) ≡
∫
P (x; R, t) e−ι2πx

Tωdx (26)

= e−ι2πω
Tt V̂ (ω1n1+ω2n2) (27)

In words, the 2D Fourier spectrum comprises a slice through
the 3D spectrum of V and a phase shift. The slice through V̂ is
on a plane through the origin and normal to d. The phase shift
corresponds to the translation between particle and microscope
coordinates in the plane normal to d.

The projection P is subject to defocus and microscope
aberration, which is characterized as the modulation of a
contrast transfer function (CTF) in Fourier domain, and de-
noted ĉ(ω; θ) with parameters θ. The standard parametric
CTF model is derived as part of the weak phase object
approximation. The specific form is given by Eq. (3) in [33]),
and there exists freely available and widely used software
(called CTFFIND3) for parameter estimation of θ. As depicted
in Figure 2, the CTF for an electron microscope oscillates with
periodic phase reversals, not typical of traditional light cam-
eras. As a consequence, EM images are not strictly positive,
and important frequency structure in the neighborhoods of the
zeros is lost. Finally, it is important to note that the locations of
zeros vary with experimental settings of the microscope, and
are often varied from micrograph to micrograph to ensure that
all frequencies are represented among the the set of particle
images. (We refer the interested read to [37] for a a more
complete treatment of the CTF.)

The final image is also contaminated by noise, two sources
of which are Poisson distributed electron noise, and absorption
due to varying thickness of the ice in which the particles
are suspended. As is common in the cryo-EM literature, we
assume a Gaussian approximation to the Poisson electron
noise, and constant ice density in each particle image. The
mean electron noise and the local ice absorption are estimated
around the border of each particle image (since particles
are roughly centered by the particle picker), and subtracted
from the particle images. This is a process commonly known
as “floating” in the cryo-EM literature. As a consequence,
we assume a mean-zero, white Gaussian noise process with
variance σ2 and zero density outside the support of the particle.

Putting the above together, the image in the microscope can
be expressed, in the spatial domain, as follows

I(x) = (c ∗ P ) (x; θ,R, t) + ν(x) , (28)

where ∗ denotes convolution, c(x; θ) is the real-space form of
the CTF (the point spread function), and ν denotes the white
Gaussian noise process. In the Fourier domain,

Î(ω) = ĉ(ω; θ) e−ι2πωTt V̂ (ω1n1+ω2n2) + ν̂(ω) . (29)

Because the Fourier transform is unitary,4 the noise remains
additive and Gaussian in the Fourier domain. That is, the
distribution of noise at frequency ω is proportional to a mean-
zero, isotropic complex normal random variable with variance
2σ2. The proportionality and rescaled variance is due to the
fact that the noise is constrained to be purely real, resulting
in a Hermitian Fourier transform.

In practice we discretize the density V to obtain a 3D
grid, V , with density represented at each of D3 voxels.
Let V̂ denote the 3D discrete Fourier transform (DFT) of
V . The discrete particle images, denoted I, formed through
orthographic projection, comprise D2 pixels, sharing the same
resolution as the 3D voxels. The 2D DFT of I, denoted Î, is
defined at frequencies ω in Ω ≡ {(n/D,m/D)

T}0≤n,m<D.
Given the Gaussian noise model, the Fourier coefficients are
independent so the joint likelihood can be written as the
product; i.e.,

p(Î | θ,R, t,V, σ2) ∝
∏
ω∈Ω

CN (Î[ω];µ(ω), 2σ2) (30)

where Î[ω] denotes the DFT coeficient at frequency ω, and
µ(ω) = ĉ(ω; θ) e−ι2πωTt V̂(ω1n1+ω2n2) and CN (·) denotes
the Complex Normal distribution. To evaluate the Fourier
coefficients in (30) we must interpolate V̂ . To do this we use
trilinear interpolation with premultiplication, however more
advanced approaches are possible. See [31] for a thorough
discussion of issues around interpolation in the Fourier domain
for volume rendering.

One key advantage of expressing the likelihood over Fourier
coefficients is that we can easily adapt the likelihood to per-
form low resolution estimation with significant computational
savings. In particular, it is easy to include only low frequency
term, e.g., up to a frequency cut-off, ω∗:

p(Î | θ,R, t,V, σ2) ∝
∏
ω∈Ω

||ω||<ω∗

CN (Î[ω];µ(ω), 2σ2) (31)

The savings stem from the fact that the number of Fourier
coefficients increases quadratically with frequency.

Optimization entails computation of the gradient of the
likelihood with respect to the density V , and in doing so, the
CTF and pose parameters, and any terms that depend on them,
are treated as fixed. Computation of the gradients with respect
to V̂ is straightforward because of the linearity of interpolation
and the image formation model. The gradient with respect to
V can then be found through the chain rule to be the (unitary)
inverse Fourier transform of the gradient with respect to V̂ .
This is possible because of the linear, unitary nature of the
Fourier transform.

4. Note that while the standard definition of a continuous Fourier transform
is unitary, most implementations of the discrete Fourier transform are not.
In practice the DFT must be rescaled or the equations here must be scaled
appropriately.
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