arXiv:1606.07415v1 [cs.CV] 23 Jun 2016

Find your Way by Observing the Sun and Other Semantic Cues

Wei-Chiu Ma' Shenlong Wang? Marcus A. Brubaker? Sanja Fidler> Raquel Urtasun?

!Carnegie Mellon University

Abstract

In this paper we present a robust, efficient and afford-
able approach to self-localization which does not require
neither GPS nor knowledge about the appearance of the
world. Towards this goal, we utilize freely available carto-
graphic maps and derive a probabilistic model that exploits
semantic cues in the form of sun direction, presence of an
intersection, road type, speed limit as well as the ego-car
trajectory in order to produce very reliable localization re-
sults. Our experimental evaluation shows that our approach
can localize much faster (in terms of driving time) with less
computation and more robustly than competing approaches,
which ignore semantic information.

1. Introduction

Self-localization is a crucial component required to make
self-driving cars a reality. An autonomous system has to
be able to drive from point A to point B, park itself and
recharge its battery when needed. With the availability of
maps, semantic scene understanding becomes easier when
the car is localized as strong priors from the map can be ex-
ploited [38} 29]. Self-localization is also key for map build-
ing.

The most commonly used self-localization technique is
the Global Positioning System (GPS), which exploits trian-
gulation from different satellites to determine the position
of the GPS device. However, low-cost GPS systems are
not reliable enough for applications such as robotics or self-
driving cars. The presence of skyscrapers, signal jammers
and narrow streets are common sources of problems, that
make these systems non robust.

To overcome the limitations of GPS, many place recog-
nition techniques have been developed in the past few years.
These approaches record how the “world” looks like ei-
ther in terms of geometry (e.g., LIDAR point clouds) or
visual features, and frame localization as a retrieval task,
where one has to search for a similar place in the large-scale
dataset of the world [[1, 8} 1182411251341 [35143]]. This is typ-
ically combined with GPS, which narrows down the region
of interest where the search needs to be performed. The
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main limitation of place-recognition approaches is that they
require an up-to-date representation of the whole world.
This is far from trivial, as the world is constantly changing
and in the case of visual features, one needs to capture over
different seasons, weather conditions and possibly times of
the day. Privacy is also an issue, as recording is currently
illegal in countries such as Germany, where cameras can be
used for driving but their content cannot be stored.

With these problems in mind, Brubaker et al. [4] de-
veloped an approach to self-localization that exploits freely
available maps from OpenStreetMaps (OSM) and localizes
based solely on visual odometry. The idea behind is that
the vehicle’s trajectory is a very strong indicator of which
roads the vehicle could potentially be driving on, and if one
drives long enough, the car’s possible location can be nar-
rowed down to a single mode in the map. This paradigm
is much more appealing than place recognition approaches,
as it does not require to know/store the appearance of the
world, and only a cartographic map of the road topology is
necessary.

Brubaker et al. [4] showed very impressive results in
terms of localization accuracy, reaching the precision of
the map. However, their approach suffers from three main
problems. First, it can fail to localize in very dense road
maps as it relies solely on the uniqueness of the ego-motion.
Second, the time to localization remains fairly large, reduc-
ing its applicability. Last, the computational complexity is a
function of the uncertainty in the map, which remains fairly
large when dealing with maps that have repetitive structures
(e.g., Manhattan grid).

In this paper, we push the limit of vision-based naviga-
tion systems. We propose to exploit semantics to reduce
localization time and the computational cost, as well as to
increase the number of sequences that can be successfully
localized. We remain in the scenario where the appearance
of the world is unknown in order to create affordable solu-
tions to self-localization. Towards this goal, we develop a
novel probabilistic localization approach which makes use
of four different types of semantics in addition to the vehi-
cle’s trajectory. The most important cue we exploit is the
sun, which (if we know the time of the day) can act as a
compass, providing information about the absolute orien-
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Figure 1: (a) The sun distribution in the KITTI Raw Dataset. (b) The parameterization used to describe a street segment as
well as the position and the heading of a vehicle. (c) To encode intersection information, we partition road segments based

on the visibility of an intersection.

tation of the vehicle. This provides very complementary
information to visual odometry, which is rotation invariant
as we do not know the initial orientation of the car. Addi-
tionally, we exploit the presence/absence of an intersection,
the type of road that we are driving on, as well as the roads’
speed limit. These cues can help us narrow down the set
of possible car’s locations in the map in a very short time,
reducing the computational demand of our localization al-
gorithm.

Estimating the sun direction is not an easy task, as the
sun might not be present in the image. Traditional ap-
proaches [21] detect shadows and estimate the sun direc-
tion from them. Unfortunately, estimating shadows is far
from trivial, and as a consequence existing approaches fail
to provide accurate estimates of the sun direction. Instead,
we take an alternative approach and employ a convolutional
network to directly estimate the sun direction from a single
image. As shown in our experiments, this simple approach
works remarkably well in real-world driving scenarios. In-
terestingly, conv3 and conv4 activations fire at both shading
and shadow regions. We also employ deep learning to es-
timate the presence/absence of an intersection and the road
type. Importantly, we show that one can use OSM and the
time of the day to create automatic labels for all the tasks
(i.e., sun estimation, road type, presence/absence of an in-
tersection).

We demonstrate the effectiveness of our approach on
the challenging KITTI dataset [14] and show that we can
localize much faster and with a lower computational cost
than [4]]. Furthermore, we successfully localize in scenarios
where [4] fails. Next, we discuss related work, how to use
deep learning to extract semantics as well as our novel self-
localization approach. We then evaluate our approach and
conclude.

2. Related Work

Localization in maps has been long studied in robotics,
typically with particle-based Monte Carlo methods [6] |12}
17, 132]]. These approaches mainly employ wheel odome-

try or depth measurements as observations. Maps have also
been used to improve upon noisy GPS signals [319,[11,[16].
In contrast, in this work we assume no knowledge of the ini-
tial position of the vehicle beyond a broad region of interest
(which contains more than 2000km of road).

Place recognition methods attempt to perform self-
localization without GPS, by searching for similar scenes
in a large database of geo-tagged images [, (18} 25|34} 43|
23, 141]], 3D point clouds [24} 130, 139, 2], 3D line segments
[2]] or driving trajectories [[8]. These approaches typically
have limitations as the database of images must be captured
and kept up-to-date. Very recent work [31}, 26] has started
to make image-based localization invariant to certain ap-
pearance changes, however, they are still not very robust
to severe changes in visual appearance due to weather and
illumination.

Localization in road maps using visual cues in the form
of the car’s ego-trajectory was recently studied in [4} [10].
The advantage of this line of work over the retrieval-based
approaches is that it only requires a cartographic map of
the road network. Projects such as OpenStreetMap already
provide world coverage and can be freely downloaded from
the web. While [[L0] requires an initial estimate of position
and was only tested in very small maps, [4] showed impres-
sive localization results where the region of interest was the
whole city. [4] relies solely on visual odometry, ignoring
other visual and semantic cues which could be exploited for
the localization task. In contrast, in this paper we propose to
use the sun direction, the presence/absence of an intersec-
tion, the type of road we are driving on as well as the speed
limit in addition to visual odometry as cues for localiza-
tion. As shown in our experiments, we are able to localize
faster, with less computation and with a higher success rate
than [4].

Recent work exploited semantics for geo-localization.
Shadows, direction of the sun [19, 42] and even rain-
bows [40] have been used for very rough localization
(roughly 100km error) and camera calibration. These ap-
proaches require a long video recorded with a stationary



Figure 2: 2D embedding of the Sun-CNN feature space with
t-SNE. Color of the image border denotes ground truth rela-
tive sun position, i.e. red sun is in front of the vehicle, green
sun is on the right, cyan sun is on the back, and magenta
sun is on the left. Sun-CNN not only effectively separates
images showing different sun directions, but also preserves
the relative relationship, e.g. images where sun are on the
front lie between images where sun are on the left front
and

camera, which is not realistic in autonomous driving scenar-
ios. In [22], visual odometry was combined with sun and
gravity sensors. However, additional sensors are required
for this method, while our approach directly reasons about
the sun direction from images. Another interesting work ex-
ploited semantic labeling from a single image and matching
with the GIS dataset [S)]. However, using semantics from a
single image alone cannot achieve a meter-level accuracy in
large-scale urban environments, where the semantic layout
of the scene is very repetitive.

Semantic cues imposed by maps have also been used for
indoor settings such as localization in apartments [27/] and
museums [28]]. Their cues are tailored to static imagery, and
thus not directly relevant for our scenario.

3. Deep Learning for Semantics

In this section we describe how we employ deep learn-
ing to estimate sun direction, road type as well as the pres-
ence/absence of an intersection.

3.1. Sun Direction Estimation

We start our discussion by describing how to estimate
relative sun direction from a single image. Given the time
of the day and a coarse geo-location, we can recover the
absolute camera pose (i.e., vehicle’s heading direction) by
estimating the sun direction in the image, which can be used
as a compass. As shown in the next section knowing the
sun direction will significantly reduce localization time and
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Figure 3: Cumulative sun direction error (angle between
prediction and ground truth direction) for different methods
on KITTI-Sun dataset. Our Sun-CNN outperforms previous
state-of-the-art [21] and other parameterizations by a large
margin.

computational cost.

Estimating illumination from a single RGB image
is, however, an ill-posed problem due to the unknown
depth/texture/albedo of the scene. Yet humans are good
at estimating the light direction with the help of some vi-
sual cues e.g., shadows, shading, over-exposed regions in
the sky. For instance, if the buildings on the left side of the
image are much brighter than the ones on the right side, we
can infer that the sun is most likely on the right hand side.
If we had an effective shadow detector and we knew the
geometry of the scene, we could estimate the sun position.
Unfortunately, neither shadow detectors nor shading esti-
mation algorithms are good enough. Instead, in this paper
we adopt a convolutional neural network to automatically
learn and capture all kinds of visual cues that may help to
estimate relative sun position.

In order to perform end-to-end training of the neural net
we must have enough labeled data. However, to our knowl-
edge no dataset with ground-truth labeled sun direction is
large enough to train a deep neural network. Fortunately,
given the timestamp and a coarse location (which we infer
from GPS+IMU on KITTI [14]), we can calculate the ab-
solute sun position in the sky under a horizontal coordinate
system with the solar positioning algorithm [33]. We refer
the readers to the appendixﬂ for a detailed explanation of
this algorithm. We thus automatically generate labels from
the KITTI Raw dataset [[14] to form our KITTI-Sun dataset.
As adjacent frames are visually very similar, we subsample
the videos at 1 frame/s, resulting in 3314 images. Note that
the distribution of sun directions is quite uniform for our
KITTI-Sun dataset as depicted in Fig.[T(a).

To ensure that our network takes into account the
geodesics of the rotation manifold, we parameterize the sun
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Figure 4: Comparison between ImageNet-CNN and Sun-CNN: the activation map of units at different layers for an input
image. As the network goes deeper, the original ImageNet-CNN starts to capture certain high-level concepts, while our Sun-
CNN focus on detecting the local illumination variation which is of crucial importance in detecting shadow and inferring sun
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Figure 5: Shading/shadow detectors emerge in Sun-CNN: Test images and the corresponding activation maps of certain
units in conv3 and conv4 layers of Sun-CNN. Despite being trained on image-level label (the relative sun position), our
Sun-CNN automatically learns to fire on shadings (conv3) and shadows (conv4).

direction with a two dimension unit vector. Our network
structure is adapted from AlexNet [20], where we replace
the softmax layer with two continuous output variables rep-
resenting the predicted 2D vector. By minimizing the dis-
tance between the ground truth vector and the output, the
network is learning how to predict the sun direction cor-
rectly. We adopt cosine distance as our distance metric
which measures the angle between the two vectors and in
practice performs the best (see Sec.[5.1]for more details).

3.2. Intersection Classification

Unlike the sun direction, the presence of an intersection
in an image cannot be directly estimated from GPS+IMU.
An alternative is to use crowd-sourcing systems such as
Amazon Mechanical Turk (MTurk). Labeling images, how-
ever, is an expensive process as a quality control process is
frequently required in order to sanitize the annotations. In-
stead, we exploit GPS/IMU as well as map data (i.e., OSM)
to automatically generate ground truth labels.

Similar to the KITTI-Sun dataset, we subsample the
KITTI-Raw dataset at 1 frame/s. We then locate the
camera’s position and estimate the visible area in the map
using the GPS+IMU information. We further exploit the
fact that the field-of-view of KITTI is 135 degrees, and de-
fined the intersection visible area to be a sector with ra-

dius (6.25m-23m). The radius is selected via an empiri-
cal in-house user study according to whether humans can
reliably determine the presence of intersection. We then au-
tomatically label each image as containing an intersection
if there is one in the sector of interest of the OSM map.
Using this procedure, we obtained the KITTI-Intersection
dataset, consisting of 3314 images, 518 of which contain an
intersection. Note that although we focused on images from
KITTI, our automatic labeling procedure can be generalized
to other geo-tagged images. Our intersection classification
network is adapted from GoogleLeNet [36]].

3.3. Road Type Classification

We subsample the KITTI-Raw dataset at 1 frame/s,
and project the camera location of each image using
GPS+IMU onto the nearest street segment on the OSM
map. We then use the road type category provided by OSM
to automatically create labels for the road-type classifica-
tion task. We collapse labels {trunk, trunk-link, motorway,
motorway-link}, into a single type highway, and all other
labels into non-highway. Our KITTI-road-type dataset con-
sists of 3314 images, 232 of which are non-highway.We
adapt AlexNet [20] to deal with road-type classification.
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Figure 6: Qualitative results of semantics estimated by our CNNs: predictions of road and intersection types are under
each image. The failure prediction is marked in blue. We also show predicted sun direction on the right of each image in

black, while ground truth in red.

4. Sun and Semantics for Self-Localization

In this section we describe how to exploit OSM maps,
sun direction, the presence/absence of an intersection, the
road type, the speed limit and visual odometry to perform
self-localization.

4.1. Map Representation

Following [4], we represent the map with a directed
graph, where nodes encode street segments and edges de-
fine connections between the segments. As illustrated in
Fig. [[[b), each street segment in the map is described by
its starting and ending points po and p; respectively, ini-
tial heading angle §, maximum speed limit V', road type
R, intersection type I, and a curvature parameter . The
curvature is zero for linear street segments (i.e., « = 0)
and o = w for circular arc segments where vy and
1)y are the starting and ending angle of the arc and / is the
arc length of the segment. We further define the position
and orientation of a vehicle in the map in terms of the street
segment u that the vehicle is on, the distance traveled on
that street segment d as well as the offset of the local street
heading 6. Through this parametric representation, we can
easily obtain the global heading of the vehicle #, which is
given by § = 6 + 3 + ad.

4.2, State-Space Model

The state of the model at time ¢ is defined as x; =
(ut,s¢), where u; is the street where the vehicle is driving
on and s; = (d, (ft_l, 0, ét_l), with d; and 6; the distance
and local heading angle of the vehicle w.r.t. the origin of
the street u;. Further, cit,l, ét,l are the distance and angle
at the previous time step ¢t — 1 relative to current street u,.

In this work, we employ five types of observations: sun
direction, intersection type, road type, vehicle’s velocity,
and visual odometry. Lety, = (¢, it, 7+, v¢, 0¢) be the ob-
servations at time ¢, with ¢; the estimated relative sun di-
rection with respect to vehicle’s current heading, i, the es-

timated intersection type in front of the vehicle, r; the esti-
mated type of road the vehicle is currently driving on, v; the
measured velocity of the vehicle (calculated from the visual
odometry), and o; the visual odometry measurement. We
assume that the observations are conditionally independent
given the state x;, and define a fully factorized observation
model:

P(¥eIxt) = p(@elxe)p(ie|xe)p(re] x4 ) p(ve| x4 )p(0e|x2) (1)

We now describe each likelihood term in more details fol-
low by the state transition distribution.

Sun Direction: This term encourages the estimate of the
sun direction computed from the car’s location and time of
the day to agree with the estimated sun direction with our
Sun-CNN. Towards this goal, we model the sun direction as
a Gaussian distribution:

P(Pe[xi) = N (delpg(x4), X%), ()

where f14(x;) is a deterministic function which computes
the relative sun position from the vehicle’s current state x;
and the global sun position that calculated from time of the
day and coarse geo-location. Please refer to appendix for a
detailed formulation of y,(x;). We learn the covariance ¥.°
from the training set.

Intersection Type: This term captures the fact that the pres-
ence/absence of an intersection in a road segment should
agree with the estimation of our Intersection-CNN. As men-
tioned in Sec.[3:2] we define an intersection to be visible if
it lies between (6.25m-23m) and it intersects with the view-
ing frustum. Following this definition, we further partition
the OSM street segments that contain an intersection into
three sub-segments as shown in Fig. [[(c). The first one is
connected to the intersection and has length 6.25m. As it is
too close to the intersection, we assume that the intersection
cannot be seen. The second segment spans from (6.25m-
23m) and the intersection is visible. The third segment is



more than 23m away from the intersection and thus is la-
beled as not containing an intersection. Thanks to this par-
titioning, the intersection type does not vary within a street
segment. We thus model this observation as a Bernouille
distribution only affecting the street segment ID:

. . int _gint
plie]xe) = pliglug) = At (1 — ) %%, (3)

with 62:15“ a delta function with value 1 if the presence of
an intersection in u is the same as the one output by the
intersection-CNN, and 0 otherwise. We estimated ~ using
the confusing matrix of the training data. In practice we use
v =0.8.

Road Type: This term captures the fact that roads of the
same type as the one estimated by our Road-Type-CNN
should have higher likelihood. We thus model it with a
Bernouille distribution:

type

p(relxe) = plreug) = B (1= B) =07 (4)

with 5%’% a delta function with value 1 if the type of u; is
the same as the one output by the Road-CNN, and 0 other-
wise. We estimated 8 = 0.9 using the confusing matrix of

the training data.

Speed Limit: This term models the fact that the speed of
driving depends on the speed-limit. We model the probabil-
ity of the vehicle’s velocity as a piece-wise constant func-
tion, which depends on the road type. If the vehicle’s ve-
locity is less than the maximum speed, we treat it as a uni-
form distribution over all possible speeds. We employ as
maximum speed 25km/h over the speed-limit, as we empir-
ically observed in KITTI that the driving speed is very often
above the speed limit. A uniform distribution makes sense
as there might be traffic ahead of us, slowing our driving. If
the velocity exceeds the maximum speed, we give very low
probability. Thus

0.99 .
v, v <V, +W
p(vt|xt) = p(vt‘ut) - {Vut""vo’ ‘ Ut :
€, otherwise
&)

where V,,, denotes the maximum speed of street u; and €
represents a very small number, which we set to 10™%,

Odometry: Following [4] we model odometry as a Gaus-
sian distribution linear in s;,

p(Ot‘Xt) :N(0t|MutStaEZt)a (6)

with M, = [mg4, my|", my; = (1,-1,0,0)” and my =
(e, —0vy,1,—1)T. Since the visual odometry performs
significantly worse at higher speeds, we learn different vari-
ances for highways and city/rural roads as suggested by [4].
35, is therefore a function of the street u; and is directly
learned from data as discussed in Sec. 4.4

Accuracy Non-intersection | Intersection | Total
Intersection-CNN 82.8% 75.29% 81.62%
Human Perception 86.62% 79.53% 85.51%

Accuracy Non-highway Highway Total

Road Type-CNN 99.45% 91.38% 98.88%
Human Perception 99.51% 93.5% 99.06%

Table 1: Accuracy for Intersection-CNN and Road-Type-
CNN vs humans.

State Transition: We factorize the state transition distribu-
tion as

p(Xt\Xt—l) = p(ut|Xt—1)p(St|Ut7 Xt—1)~

As is common in the literature, we use a second order
constant velocity model to describe the vehicles’ motion
represented by linear transition dynamics corrupted with
Gaussian noise for p(s¢|us, x¢—1). We define the probabil-
ity of changing streets, p(u¢|x¢—1), as a sigmoid, encoding
the fact that transitions between street segments are more
likely to occur as we arrive to the end of the street segment.
We refer the readers to the appendix for more details.

4.3. Inference

Inference in our model consists of recursively computing
the distribution p(x¢|y1.¢). The posterior can be factored
as p(x¢|y1:t) = p(Se|us, y1:4)p(ue]y1:¢) using the product
rule, where p(u:|y1.+) is a discrete distribution over streets
and p(s¢|ug, y1.¢) is a continuous distribution over the po-
sition and orientation on a given street. The discrete distri-
bution p(u|y1.¢) is easily represented as a multinomial dis-
tribution over street labels. As for the continuous distribu-
tion p(s¢|ut, y1.¢), we represent it with a Gaussian mixture
model. With our model assumptions, the filtering distribu-
tion can then be written recursively as

p(yelxe) [ p(xe]|xe—1)p(Xe—1]y1:6—1)d%—1
P(yelyi:i—1) '

p(xelyre) =

(N
Here, we use the efficient approximation of [4] to approx-
imate our posterior. This is possible as by design our like-
lihood terms are either Gaussian or only dependent on the
street segment which is a discrete variable. More details on
inference can be found in the appendix.

4.4. Learning

In this section, we discuss how we learn the odometry
and sun direction noise, 3¢ and ¥°. As both odometry
and sun direction are modeled as a Gaussian distribution,
we apply maximum likelihood estimation (MLE) to learn
the variance from the data. For odometry, we compute the
ground truth by projecting each image onto the road us-
ing GPS+IMU, and calculating the odometry of the GPS.
For sun direction, we employ the images in the KITTI-Sun
dataset.We note that different parameters were learned for



\ [ Localization Time | Computational Time |  Gini Index | Success Rate |
Brubaker et al.[4] 46 + 24s 0.69s/frame 0.765 £+ 0.057 81.8%
Our Full Model 25 4+ 21s 0.48s/frame 0.879 +0.013 90.9%

Table 2: Comparison against [4]. Our approach significantly outperforms [4] in term os localization time, computation

time, Gini index and success rate.

highways and city/rural roads as the visual odometry per-
forms significantly worse at higher speeds. Leave-one-out
cross validation was used to learn the parameters.

5. Experimental Evaluation

We validate the effectiveness of our approach on the
training sequences from the KITTI visual odometry bench-
mark [[14]] where ground truth trajectory is available.

5.1. Deep Learning for semantics

For all three semantic tasks, we hold out images from
each odometry sequence to create each split, and use the
rest for training, resulting in 11 models. We augment the
training images 10 times by cropping/mirroring. All hyper-
parameters are selected via grid search on the validation set.
Note that sequence 03 is excluded from the semantics eval-
uation as GPS and IMU data is not available.

Sun-CNN: We initialized our network with weights pre-
trained on ImageNet [7]], and employ a learning rate of 10>
for fc7, and 1076 for the rest. Training a deep net for
this task took around 3 hours requiring approximately 200
epochs to converge. We use the cumulative sun direction
error (angle between prediction and ground truth direction)
across the KITTI-Sun dataset as metric. We compare our
model against the state-of-the-art sun estimation approach
of Lalonde et al.[21]. We use default values for all param-
eters in [21]], except the sun visibility vs and the horizontal
line vy,. The sun visibility probability P(v,) of all images
are set to 0.8, since KITTI was collected in good weather.
The horizontal line v;, is computed using KITTI calibra-
tion. For more details, we refer the readers to [21]. To
verify our current settings best describe the geodesics of the
rotation manifold, we also exploit different loss functions
and parameterization. We first change the distance metric
between two vectors from cosine distance to L2 distance,
which we denoted as L2-Vec. We further re-parameterize
the sun direction in the image with a single variable (an-
gle) and modify the network structure to a single contin-
uous output, which we denote as L2-Angle. Fig. [3] shows
that our Sun-CNN significantly outperforms [21]] by a large
margin and our choice of loss function and parameteriza-
tion consistently surpass those of others. Over 60% of the
images have prediction errors less than 20 degrees with our
approach, while only 25% for [21]]. A few qualitative results
are shown in Fig.[6] We also visualized the fc7 embedding
space learned by Sun-CNN with t-SNE [37]] in Fig. 2] Sun-

CNN not only separates images based on their sun direc-
tion, but also preserves the relationship among images, i.e.,
images with similar sun direction are embedded closer.

To further understand why our Sun-CNN performs so
well, we visualize in Fig. ] the activation map of some units
at different layers of the network as well as a network with
same architecture but trained on the ImageNet classifica-
tion task. Unlike classic network whose deep convolution
layers learn high-level concepts [44], our kernels at conv3
and conv4 layers start to capture the illumination variations
in the images, e.g. shadows and shadings. We argue that
this is because our Sun-CNN learns that shading and shad-
ows are crucial for predicting sun direction. As a proof of
concept, Fig. [5] shows the activations of several neurons in
conv3 and conv4 layers. Despite being trained on a high-
level task (i.e., sun direction), our Sun-CNN automatically
learns to fire on both shadings and shadows.

Intersection-CNN: For each fold, we uniformly over-
sample the images labeled as intersections so that each class
is balanced. Since we are trying to differentiate whether
an image is taken at a place where an intersection is visi-
ble, we pre-trained the convolutional net on the MIT Places
dataset [45]. We set the learning rate of the last fully con-
nected layer to 6 x 10~%, and the rest to 6 x 10~°. Train-
ing took 2 hours and 150 epochs to converge. As shown in
Tab. [I|our Intersection-CNN can achieve 82% accuracy. To
validate human performance on this task, we also asked 3
in-house annotators to provide labels for each image. Tab.[I]
shows that human perception is only 4% higher than our
deep model, demonstrating the difficulty of this task. Some
qualitative results are shown in Fig. [6]

Road-Type-CNN: As the data is unbalanced, we over-
sampled the less frequent classes. We pre-trained our net-
work on the MIT Places dataset [45]. The learning rate of
fc7 is set to 102, while we use 102 for the rest. On aver-
age, training took around 1.5 hours and approximately 100
epochs to converge. As shown in Tab. |1| the Road-Type-
CNN can achieve almost 99% performance. We also vali-
date human performance on this task by asking 3 in-house
annotators to label each image. The performance of the
Road-Type-CNN is comparable to human perception.

5.2. Localization
We subsample the KITTI sequences from 10 frame/s to

1 frame/s. Slower rates were found to suffer from exces-
sive accumulated odometry error, while a higher rate may
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denotes the semantic cues employed. In our scenario, the closer —

only the sequences that all methods localize.

suffer from correlations in semantic errors. We utilize LIB-
VISO2 [15] to compute visual odometry and velocity. For
sun direction, presence of an intersection, and road-type, we
employ the corresponding CNN models trained in the split
that does not contain the test sequence. Note that sequences
in KITTT have different routes, the training/test images are
thus spatially non-overlapping as well. We tested our local-
ization algorithm on both the full sized map of Karlsruhe,
as well as the sequence-specific, cropped maps provided by
[4]. The cropped maps include the region which contains
the ground truth trajectory and, on average, cover an area
of 2 km? and contain 100 km of drivable roads. While [4]
pruned dirt roads and alleyways during preprocessing stage,
we preserve all drivable roads in the map, making the local-
ization problem more difficult (see appendix for compari-
son).

As shown in Tab. [2] our model using all semantic cues
performs much better than [4]] in terms of localization time,
computation time and localization success rate A se-
quence is defined to be localized when, for at least ten sec-
onds, there is a single mode in the posterior. Once the crite-
ria for localization is met, all subsequent frames are consid-
ered localized. We note that we localize in sequences where
[4] failed |’} To further evaluate how fast our approach can
reduce the solution space, we also employ Gini index [13]], a
well-known measure of statistical dispersion, as a new met-

2We re-emphasize that the localization accuracy of [4] is already at
level of precision of OSM and cannot be improved further. The accuracy
of our approach is similar to [4]. Please refer to appendix for detailed
numbers.

30ne should note that as we employed a more complex map comparing
to [4], the results of using merely visual odometry may differ from their

paper.

% to 1, the better. We compute the average using

ric. Fig.[7[b) shows the average number of road segments
(3m) that have probability larger than 0 across all sequences
when employing different semantic cues. We denote the
area below each curve as B,.,,, while the area between
the black line and the curve as Ag.,,, where sem denotes
the semantic cues employed. The Gini index is defined as
%. The closer the ratio is to 1, the faster the solu-
tion space is pruned (the better).

Examples of results on cropped maps are shown in Fig. [§]
(see appendix for results using the full map). We observe
that sequence 06 traverses a geometrically symmetric path,
causing inference to be unable to select between the two
modes using only visual odometry. When using the sun, this
ambiguity can be resolved. Since the intersections along the
path are distinct, intersection information can also resolve
the symmetry. We also show the average localization time,
the average computation time and how fast an approach can
reduce the solution space across all sequences in Fig.[/| In
general, additional semantics reduce the localization time
and lower the computational cost by reducing uncertainty.

Tab. [3] shows more detailed ablation studies. The sym-
bols “O”, “S”, “T",“R”, “V” represent the observation types
that were used during inference, i.e., visual odometry, sun
direction, intersection type, road type and velocity. Se-
quences that are not localized are indicated with a ”*”. In
general, adding each semantic cue will help boost the per-
formance. However, if the semantic observations estimated
from the images are noisy, they might lengthen the time re-
quired to localize. For instance, intersection-CNN hurts the
localization in sequence 07 due to errors in estimating the
sun direction, while velocity slightly increase localization
time due to the over-speed of the vehicle. When combining
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Table 3: Quantitative evaluation: ”O”, ”S”, ”I”, ”R”, ”V” represent the observation types that were used during inference,
i.e., visual odometry, sun direction, intersection type, road type and velocity. The average localization time, position and
heading error are computed with sequences that localizes. Sequences that did not localize are indicated with a ”*”. No
approach localize Sequence 04. Full table with all combinations of semantics and all metrics is shown in appendix. When

employing all semantics our approach localizes faster.

all cues, our inference algorithm significantly improves the
efficiency and achieves the best performance. One may sus-
pect that the sun is not useful when cloudy. Note that our
semantic cues are complementary and even without estimat-
ing the sun direction we still outperform [4] (see appendix).
This is important in autonomous driving as one has to be
robust.

To visualize how individual cues contribute to the local-
ization task, we show frames from sequence 05 in Fig. 9]
Sun direction provides the strongest initial cue, as it is able
to fairly quickly eliminate a large number of roads whose
directions are inconsistent with the heading implied by the
sun. Speed limit information is most helpful when a ve-
hicle is traveling at high speeds, enabling many low-speed
roads to be pruned. However, even when traveling at slower
speeds, it can be helpful as slower speeds are less likely
on highways. Thus the portion of highway on the left has
lower likelihood with speed information than with odome-
try alone. Intersection cues also help pruning the space. For
instance, at ¢ = 206s the vehicle is not near an intersection
and thus one can observe that modes near intersections are
suppressed. Finally, the road type classifier by its nature
is only useful in differentiating highways from other roads.
For instance, at t = 8s the highway has been pruned.

While the added cues make localization more robust
and efficient, there are still limitations, particularly for ex-
tremely short or ambiguous sequences. Fig. shows a
sequence which still fails to localize, even with the added
cues. We note that when compared to the odometry only
case (top) the uncertainty has been further reduced (bot-
tom), suggesting that with just a few more seconds of driv-
ing we would be able to localize by pruning out the faint
secondary mode. In contrast, with only odometry, there still
remains the ambiguity of the overall direction of travel.

6. Conclusions and Future Work

We have presented an effective affordable approach to
self-localization, which exploits freely available maps as

Sequefice 04

Figure 10: Failure case: The first row shows the results
of [4], while the second row shows ours with all semantics.
Although our model still fails to localize, we have reduced
considerably the uncertainty. Just a few more seconds of
driving, we would be able to localize by pruning the faint
secondary mode using the intersection information.

well as visual odometry and semantic cues such as the sun
direction, presence/absence of an intersection, road type
and speed limits. Towards this goal, we exploited deep
learning to directly estimate the semantics from monocular
images. Interestingly, our Sun-CNN automatically learns
coarse shading/shadow detectors. We have also shown how
to automatically generate high quality labels without human
intervention for all semantic tasks. We demonstrated the ef-
fectiveness of our localization approach in the challenging
KITTI dataset and showed that we can localize faster and
using less computation than [4]]. In the future, we plan to ex-
ploit more semantic cues like traffic signs, trees, buildings,
and road width. Although these data are either sparsely an-
notated or mostly incorrect, we hope the OSM maps be-
come more complete and noise-free.
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