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Our Model SCAPE Hasler Allen
Mesh Linear Nonlinear Nonlinear Linear
recon. (Least Squares) (Poisson)
Mesh 1.82 [mSec] (full) 1 [Sec]
recon. 1.17 [mSec] (pose) mesh only 25 [Sec] 13 [mSec]
speed (given matrices)

Semantics
Skeleton Skeleton
Body shape Body shape None Skeleton
Anthropometrics

Mean
reconstruction 5.3 [mm] N/A 54 [mm] 4.9 [mm]
error

Table III: A comparison between our model, SCAPE [1],
Hastler [2], and Allen [3]. Semantics refers to the direct
interpretation of model parameters. Semantic parameters,
such as explicit anthropometrics (skeleton) representation,
is useful in the context of tracking. In our case, it allows
direct control over which set of parameters to optimize.

Abstract—Supplemental material for ”Walking on Thin Air:
Environment-Free Physics-based Markerless Motion Capture”
paper.

VI. RESULTS

The accompanying video can be found in the project
website: https://research.seraphlabs.ca/u-of-t/performance-
capture/.

VII. LEARNING THE BODY MODEL

In order to learn the body mesh model in Sec. III-A we
use the Hastler dataset [2], which consists of 111 subjects
with 520 poses, all with registered meshes. We learn the
model by minimizing Eq. 14 w.r.t. the weights W = {wib},
the different mesh templates {p̃s}s per subject s, and the
template pose and anthropometrics {qs, `s}s per subject s.
We define the number of weights per vertex based on joints
proximity along the kinematic tree, with BFS of distance
3. Since we optimize all parameters w.r.t. to the same
reconstruction error function (Eq. 14), we get an accurate
reconstruction despite the simplicity of the model, when
compared with other state-of-the-art models (Table III).

Notice that some of the models in Table III were trained
on different datasets. However, our main goal is to demon-
strate that our model is comparable to state-of-the-art mod-
els, rather than a comprehensive comparison. In our dataset
only 43 out of 111 subjects have more than a single pose,
which is required for our training. However, those subjects
account for 86% of the total number of poses (450 out of
520 poses).

A. Model Parameters Optimization

While it is possible to optimize for the weights, mesh
templates and pose simultaneously, it is a slow, non-convex
and nonlinear optimization. Instead we alternated the opti-
mization between the parameters, which yields a much faster
optimization process, and is also convex w.r.t. the mesh
templates and weights. Our learning process includes the
following steps:

1) Initialize qs for all subjects by fitting landmarks
(based on the registered meshes).

2) Repeat until convergence:
a) Optimize weights W = {wib} given current

poses and mesh templates. We optimize a global
reconstruction error function as W is shared
among all subjects

F =
∑
s∈S
Fs (Θs,D) (17)

where S are all subjects with more than a single
pose in our dataset. By examining Eq. 3, it is
clear that Eq. 17 is convex w.r.t W . Thus, we
can define As,j

i by rewriting Eq. 3 as

(
. . . Mb (qj) · M̃b (q̃s)

−1
p̃s
i . . .

)
wi = pj

i

⇒ As,j
i ·wi = pj

i

(18)

where j is a pose index (over all poses of subject
s), and wi is the weights of vertex i as a vector.
By concatenating Aj

i ,p
j
i of all subjects s and all

poses j it is easy to calculate the least-squares
solution.
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b) Optimize mesh template per subject, given cur-
rent weights and poses. We optimize the mesh
template independently per subject. By examin-
ing Eq. 3, it is clear that Eq. 14 is convex w.r.t
to p̃s, and we can define Ts,j

i by rewriting Eq.
3 as

Ts,j
i · p̃

s
i = pji (19)

per vertex i and per pose j. By concatenating
matrix Ts,j

i for all poses j per subject, a simple
least-squares solution can be used here as well.

c) Optimize pose qj for all poses of all subjects. All
poses can be estimated independently, by using
nonlinear and non-convex optimization of Eq. 14
w.r.t. the pose parameter q. We used BFGS to
optimize for pose parameters qk

s for all poses of
all subject. Note: Since the optimization is local,
good initialization is required.

Practically, two full iterations iterations of (a), (b), (c)
were enough to get close to convergence. The result of the
model parameters optimization phase are W , shared weights
to be used in LMB, the mesh template per subject p̃s, the
bones length `s per subject, and the pose vector qj

s per pose
j and subject s.

B. Basis Learning

Once we learn the model parameters as explained above,
we can train a linear regressor with basis B` from bones
length to a mesh template p̃, s.t.

p̃s ≈ B` · `s (20)

where B` is learned with a least squares formulation.
By applying PCA to the null space of the linear regression

basis (difference between regressed mesh template and p̃),
we can learn the body shape basis Bβ. We used the first 10
PC as a linear basis. Once we have the two basis, B`,Bβ, we
can generate new mesh templates given any desired bones
length ` and body shape score β, as shown in Eq. 2, and
generate a mesh for any given pose by using Eq. 3.
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