
ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020
J. Bender and T. Popa
(Guest Editors)

Volume 39 (2020), Number 8

Probabilistic Character Motion Synthesis using a Hierarchical Deep
Latent Variable Model

S. Ghorbani1 , C. Wloka1 , A. Etemad2 , M. A. Brubaker1 , and N. F. Troje1

Figure 1: Samples of a real motion sequence (blue) and synthesized motion sequence generated by our model (orange)

Abstract
We present a probabilistic framework to generate character animations based on weak control signals, such that the synthesized
motions are realistic while retaining the stochastic nature of human movement. The proposed architecture, which is designed as
a hierarchical recurrent model, maps each sub-sequence of motions into a stochastic latent code using a variational autoencoder
extended over the temporal domain. We also propose an objective function which respects the impact of each joint on the pose
and compares the joint angles based on angular distance. We use two novel quantitative protocols and human qualitative
assessment to demonstrate the ability of our model to generate convincing and diverse periodic and non-periodic motion
sequences without the need for strong control signals.
CCS Concepts
• Computing methodologies → Animation; Machine learning approaches;

1 Introduction

An active research area in computer animation is the automatic
generation of realistic character animations given a set of control
parameters. This can reduce the workload of key-framing, which
is a laborious and time-consuming task done by skilled animators.
Recent advances in motion capture technology and deep learning
methods have increased interest in data-driven and learnable frame-
works for modelling human motion. Most approaches model the
motion sequences as a deterministic process, meaning that for a
given set of control parameters only a single, fixed sequence is
generated. On the other hand, human motion is stochastic in na-
ture - given the same intention and target the joints always travel
different paths. Hence, deterministic models fail to reflect such di-
versity which is an essential requirement for generating convinc-

ing and realistic character animation. Another challenge in design-
ing a motion generative model is to enforce desirable motion se-
quences constrained by weak control signals such as action type.
This is due to the fact that deterministic models usually regress
to the mean pose in the long run as no strong control signal can
be provided, especially for non-periodic movements, to steer the
motion and reduce the motion uncertainty over time. Most re-
cent controllable approaches are proposed only for periodic move-
ments with strong control signals such as trajectory characteris-
tics [HKS17, HSK16, PFAG19], or are limited to short-term pre-
dictions for non-periodic movements [MBR17, FLFM15, JZSS16].
Our work addresses these open issues by developing a model for
animation synthesis which can be modulated by weak control sig-
nals while retaining the desired stochastic characteristics of human

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14116

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-3227-9013
https://orcid.org/0000-0002-0249-9306
https://orcid.org/0000-0001-7128-0220
https://orcid.org/0000-0002-7892-9026
https://orcid.org/0000-0002-1533-2847

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

motion across both temporal and spatial dimensions. Weak control
signals are particularly useful for tasks in which large numbers of
sequences are required, such as crowd simulation or providing data
for other frameworks such as motion matching. In these situations
requiring strong control signals such as trajectory characteristics
would be unnecessarily labor intensive, whereas our framework can
continuously generate novel motion clips with minimal user over-
sight.

Our proposed model for character animation synthesis is based
on a deep recurrent neural network. We train our recurrent model
on a large database of motion capture data such that it can gener-
ate novel, convincing motion samples that imitate the high-level
stochastic nature of real data. This semi-supervised framework
does not require any manual data preparation such as time-warping
or motion clipping which minimizes the amount of manual work in
the training and synthesizing processes.

Our framework is designed as a hierarchical recurrent latent vari-
able network which models the spatiotemporal motion data with a
two-level hierarchy. The hierarchical structure of the network ar-
chitecture allows not only for motion sequences to be represented
at multiple levels of abstraction but also for a higher level of de-
sired variability in the generative process. The inner layer of the
proposed architecture is designed as an extension of a variational
recurrent neural network [CKD∗15] which is conditioned on con-
trol signals and recursively processes high-level feature vectors (de-
rived from motion subsequences) along with a stochastic latent
variable. Defining this latent variable at a high level of abstraction
enables the network to model the stochasticity observed in human
movement. The inner layer is wrapped by encoder and decoder lay-
ers which encode the motion subsequences into feature vectors and
decode the generated feature vectors back to motion subsequences.

We also propose a new objective function based on the geodesic
distance between the ground-truth and reconstructed joint angles
which has the following principal advantages: i) The geodesic dis-
tance better represents the deviation from the desired output than
lp norm losses. ii) The influence of different joints in the kinematic
tree can be represented by assigning different weights to each joint.
iii) High level and semantic information are integrated into the
learning process by comparing the ground-truth and reconstructed
sequences in the feature space of pre-trained classifiers.

We validated the performance of our model both qualitatively,
via human scoring, and quantitatively through a novel evaluation
protocol based on the Inception Score (IS) [SGZ∗16] and Fréchet
Inception Distance Score (FID) [HRU∗17]. These metrics were
first used for evaluation in image synthesis, and provide a measure
not only of the quality of the generated output but also the diver-
sity of output provided. Given the importance of movement variety
for character animation synthesis, we have therefore adapted these
metrics to provide a more complete evaluation than previously used
metrics. The results show that our model effectively learns human
motion dynamics and is capable of generating realistic and diverse
character animation sequences coherent with control parameters,
outperforming all other state-of-the-art models tested.

Our contributions can be summarized as: i) we propose a novel
hierarchical generative recurrent architecture which effectively

learns human motion dynamics and generates realistic character an-
imation sequences coherent with control parameters, ii) we present
a new objective function based on angular distances and the in-
fluence of different components in the kinematic tree which bet-
ter represents network error and leads to improved learning, iii)
we provide a new benchmark and evaluation protocol for character
animation synthesis to measure both the quality and variability of
generated sequences.

2 Related Work

Traditional Data-Driven Approaches: Data-driven approaches to
character animation synthesis have been a popular area of research
for nearly two decades. These approaches rely on motion capture
data [MGT∗19, SB06, GMT∗20] which are provided as a sequence
of poses represented by 3D joint locations or 3D joint angles of the
skeleton at each time frame. With the advent of such motion cap-
ture datasets, many traditional approaches such as Motion Graphs
[AF02, KG04], PCA-based models [SHP04], Kernel-based mod-
els [MK05, Muk11], and Hidden Markov models (HMMs) [TH00]
were proposed for the task of motion synthesis. However, these ap-
proaches fail to model the complex nonlinear dynamics of human
movements, especially for long-term multi-modal motion synthe-
sis. For instance, HMMs require a hidden state size which is ex-
ponential in the number of components and therefore suffers from
having a simple hidden state.

Early Deep-Learning-based Approaches: One of the earliest
attempts to overcome the limitations of the above approaches, Tay-
lor et al. [THR07, TH09, THR11] approached human motion mod-
elling using variations of conditional Restricted Boltzmann Ma-
chines (cRBM) as an undirected energy-based model. They mod-
elled the temporal dependency by adding poses from previous time
steps as additional inputs. More recently, the impressive results
achieved by deep generative models in other areas such as image
and speech synthesis has encouraged researchers to model human
movement using these models. The bulk of these works make use
of recurrent neural networks (RNNs) [FLFM15, JZSS16, MBR17,
AKH19, WHSZ19, WCX19, LLL18] as they have a high represen-
tational capacity in their internal state.

RNN-based Approaches: A notable approach which applies
the recurrence step to a learned representation was introduced by
Fragkiadaki et al. [FLFM15], who proposed an Encoder-Recurrent-
Decoder (ERD) architecture which encodes each pose into a feature
vector where it is recursively processed through a two-layer LSTM
network. During motion synthesis, the prediction is fed back to the
model in the following time step which causes the accumulation
of small errors at each time step (called exposure bias). To address
this problem, they corrupted the input by Gaussian noise with pro-
gressively increasing standard deviation as a type of curriculum
learning. While it is hard to tune the amount of noise, this strat-
egy was used in some of the subsequent proposed approaches as
well [JZSS16]. To tackle the problem of exposure bias, Martinez et
al [MBR17] exposed the model to its own prediction during train-
ing using a seq-2-seq architecture. They also enforced the model to
learn velocities instead of absolute values via residual connections
to address the problem of discontinuity in the seq-2-seq models.

Approaches Exploiting a Kinematic Tree: Both [FLFM15]

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

226

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

and [MBR17] modelled motion without an explicit representation
of the kinematics tree, but this structural information is a potentially
very useful model component. By explicitly modelling spatiotem-
poral interactions between joints, Jain et al. [JZSS16] combined
the explicit representational power of spatiotemporal graphs with
the implicit sequential learning of RNNs. Aksan et al. [AKH19]
demonstrated an alternative method of incorporating structural in-
formation, proposing a Structured Prediction Layer (SPL) where
the prediction of each joint at time t is conditioned on the joint’s
previous state and the current state of the parent joint. Therefore,
at each time step, the joint angles are predicted starting from the
root to the leaf nodes in the kinematic tree. They integrated the
proposed layer in a variety of baseline architectures and showed
improvements for the task of motion prediction.

Approaches based on Strong Control Signals: Although
RNN-based methods overall show impressive results in short-term
motion prediction, they fail in long-term generation due to their
deterministic state assumption which fails to capture the intrin-
sic variability in human motion which compounds through time.
Additionally, deterministic models assume a single future output,
which causes them to converge over the long-term to a mean
pose (referred to as mean collapse). Some of the proposed meth-
ods addressed this problem by adding additional information to
the model to disambiguate the generative process. Holden et al
[HKS17,HSK16] proposed providing foot contact and phase infor-
mation as strong control parameters for locomotion movements to
decrease the model uncertainty. Pavllo et al [PFAG19] augmented
the generative network with a pre-trained pace network which pro-
vides the foot-step frequency, local speed, and facing direction
given the trajectory. Martinez et al [MBR17] showed concatenating
weak control parameters such as action type to the input sequence
alleviates the mean collapse problem to some extent.

Probabilistic Approaches: Another way of avoiding converg-
ing to the mean pose is to model the intrinsic uncertainty of mo-
tion using probabilistic schemes. Many approaches were proposed
based on Gaussian Process Latent Variable Models (GPLVM)
[LWH∗12,WHF06]. However, these models are limited due to their
high memory cost for large data. More recently, adversarial learn-
ing has also been investigated for non-deterministic human motion
modelling. Barsoum et al [BKL18] proposed a probabilistic mo-
tion prediction approach via GANs. Their model architecture is
designed based on a seq-2-seq model and predicts multiple possi-
ble sequences from the same input. However, GANs are oftentimes
hard to train, and their method was not designed to be steered by
control signals. Using an alternative method also originally derived
from image synthesis, Henter et al. [HAB19] proposed an autore-
gressive model based on normalizing flows (NFs) [RM15,DKB14].
They extended a variant of NFs, GLOW [KD18], to bipedal and
quadrupedal motion sequences. However, their model needs strong
trajectory control signals and is limited to locomotion synthesis.
Similar to our proposed model, Habibie et al. [HHS∗17] use a
variational autoencoder (VAE) to model the spatial relationships.
However, they extended their model to operate in an autoregressive
fashion by setting the cell state of the LSTM components equal to
the corresponding latent variable at each time step during training.
While this approach successfully couples the LSTM representation
to the posterior distribution, by collapsing the latent variable and

internal state to one variable it limits the representational power
of the model’s internal state. Additionally, the balance their archi-
tecture strikes between control signals and previous cell state dur-
ing generation limits model performance for non-periodic complex
movements. We attempt to mitigate these drawbacks in our pro-
posed model by formulating the internal state and latent code in
two separate channels and conditioning the latent code to the pre-
vious internal state to model the temporal dependencies during test
time. Recently, [LZCVDP20] et al. proposed an interesting model
based on VAEs where the motion is controlled by setting the latent
code as the output of a deep reinforcement learning module. Unlike
our method, they modelled the motion by a Markovian assumption,
meaning that each pose only depends on the previous pose and the
autoregressive model is memoryless. They also modelled the VAE
decoder as a Mixture of Experts (MoE) network.

Mixture-of-Experts Approaches: Another strategy exploited
in [SZKS19,SZKZ20,LZCVDP20] to address the problem of mean
collapse in multi-modal motion data is to use a Mixture-of-Experts
(MoE) network where each expert is responsible for one mode in
the training data. Though effective at mitigating mean collapse, the
number of parameters in these networks increases with the number
of experts.

Style Transfer Approaches: Motivated by recent advances in
style transfer in images and videos, style transfer techniques were
exploited to transfer the style of one animation clip to another
[SCNW19, AWL∗20]. While this method generates natural motion
sequences with the desired style, these approaches cannot be di-
rected by other control signals.

3 System Overview

A visual diagram of our model architecture is given in Fig 2. We
provide a framework which encapsulates both the hierarchical and
the stochastic nature of human motion within a deep hierarchical
recurrent architecture. Our model generates motion sequences via
a two-level hierarchy. In particular, we model the human motion as
a sequence of high-level feature vectors called Motion Words where
each Motion Word, wi, is computed as a function of a sub-sequence
of poses. The recurrent processing of motion sequences is thereby
applied at word-level rather than at pose-level.

We leverage an extension of a variational recurrent neural net-
work [CKD∗15] which contains a variational autoencoder at each
time-step conditioned on the control signals. We call the recurrent
processing unit a Motion Cell (green blocks in Fig 2) which at-
taches a stochastic latent variable to the observed Motion Words at
each time-step. Stochasticity at the Word level enables variability to
be represented at a higher level of abstraction (see section 3.2 for
details), thereby producing more internally consistent motion se-
quences. The mapping between Motion Words and the correspond-
ing sub-sequence of poses is performed by fenc and fdec (yellow
blocks in Fig 2). At each time step, we condition the Motion Cell
on the control signals to modulate the motion characteristics and
decrease uncertainty due to the multi-modality nature of the motion
generation process. In general, any motion-related attribute, static
or dynamic, such as style, action type, or motion trajectory could
be used as a control signal. However, in this work, we used a set of
holistic attributes consisting of action type and gender.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

227

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Figure 2: An overview of our recurrent model. During training,
denoised frames form temporal windows of equal size where each
window x

′

(i−1)l+1:il is projected into a high level feature vector wi

(called a Motion Word) via f w
enc. Motion Cells operate on Motion

Words in a latent space to combine information from the preceding
sequence with stochastic variability to output the next step in the
sequence. This output is converted to a joint angle representation
via f w

dec. A set of classifiers provide control signals for unlabelled
input and normalization ensures that the representations fall within
valid ranges.

During training, we integrated individual pre-trained classifiers
to the model for each attribute type to infer attributes from the un-
labelled input sequence and also to provide additional higher-level
learning signals to the objective function. This constrains the model
to generate animations which fulfil the semantics defined by the at-
tribute codes (see section 3.4 for details).

Our model uses a joint angle representation to define each pose.
We tested the model with three different joint angle representations:
axis-angle vectors, quaternions, and rotation matrices. To ensure
that the model produces valid rotation for each joint, the estimated
rotations in the output of the hierarchical recurrent neural network
are normalized into valid rotations (red blocks in Fig 2). Regard-
less of the specific joint angle representation used, our model oth-
erwise operates identically from one representation to the next. To
have valid rotations represented by quaternions, the magnitude of
the quaternions should be one. Therefore, we simply divided each
quaternion by its magnitude. When instead using rotation matrices
to represent joint angles, we applied the Gram–Schmidt orthonor-

malisation process on the output matrices. No normalization step
was applied to the axis-angle vector representation.

3.1 Data Preprocessing

The local joint angle representation is augmented with processed
root joint information which encodes the global transformation
while keeping the final representation invariant to ground-plane
(x-y) translation and rotation about the gravity direction. The aug-
mented data includes forward direction velocity, sideways direction
velocity, global root height, angular velocity around the gravita-
tional axis, and the pitch and roll relative to the direction where
the subject is facing. During motion synthesis, global translation
and orientation can be recovered by integrating velocities over time
while we assume the initial facing direction is in the direction of
the x-axis in the global coordinate system. The final pose repre-
sentation consists of a Dp = 21× k+ 6 dimensional vector, where
k is 3,4 or 9 for axis-angle vectors, quaternions, and rotation ma-
trices, respectively. We sub-sampled the motion sequences into 30
frames per second (they were originally recorded in 120 frames per
second) and used all four offsets for training.

Our model can be trained by variable-length sequences of inputs.
However, to speed up the training process by parallel computing we
set the size of input sequences to a fixed size by clipping the longer
sequences and padding zeros to the shorter ones. In our work, we
set the length of input sequences to 200 frames (around 6.6 sec-
onds). For synthesis the length of a generated sequence does not
have to be equal to the length of the training sequences, rather our
model can generate sequences with arbitrary length.

Before feeding to the main model, we apply a pre-trained de-
noising network to the training sequences to correct possible er-
rors in the training data such as high-frequency noise resulting
from marker occlusions or mislabelled markers in the motion cap-
ture process. The denoising network is implemented as a one-
dimensional convolutional denoising autoencoder pretrained on a
different subset of data than the one we used for training the main
model. Details of the denoising network structure and its training
process are given in Section 4.2.

3.2 Hierarchical Probabilistic Recurrent Network

Our hierarchical recurrent network models a motion sequence of
length T with a two-level hierarchy. In the pose-level, we have a
sequence of poses and in the word-level, we have a sequence of
Motion Words. Each Motion Word, wn ∈ RDw , summarizes a sub-
sequence of poses using an encoding function

wn = f w
enc(Xnl:(n+1)l), (1)

where X1:T is the sequence of poses (Xt ∈RDp), f w
enc is a non-linear

complex encoder such as a fully-connected neural network, and l is
the length of each sub-sequence. We define the sequence of Motion
Words as an autoregressive model as follows:

p(w1, . . . ,xN) = p(w1)
N

∏
t=2

p(wn|w<n) , (2)

where N = bT/lc is the number of Motion Words in the sequence.
l is considered as a hyperparameter where the best results were
achieved for l = 3 . The dimension of the Motion Word Dw was

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

228

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Figure 3: Internal structure of Motion Cell. A Motion Cell can be
viewed as a recurrent unit conditioned on control signals.

set to 32 ∗ 3 = 96 which is equal to the approximate degrees of
freedom in each pose ([LZCVDP20, PALvdP18]) times the length
of each subsequence. To model the recursive structure of Motion
Words we used a variational recurrent neural network [CKD∗15]
extended to condition on the control parameters. The proposed re-
cursive model can be formulated as a recurrent neural network built
upon a probabilistic recurrent cell which is structured as a condi-
tional VAE at each time-step. We call these recurrent cells Motion
Cells (green MCell blocks in Fig 2, see section 3.3 for more de-
tails). The combination of a hierarchical structure and probabilistic
recurrence allows the model to define a stochastic latent variable at
the word-level. Hence, the stochastic behaviour of the generation
process is modelled at a deep level using highly abstracted features,
allowing variation to be more easily sampled in an internally con-
sistent manner from the learned feature space. We use another fully
connected layer to convert the generated Motion Words back to the
sub-sequence of poses

X̃nl:(n+1)l = f w
dec(w̃n), (3)

where w̃n is the output of the Motion Cell at time-step n (also called
the reconstructed Motion Word) and X̃nl:(n+1)l is the correspond-
ing reconstructed sub-sequence. The details of the Motion Word
encoder (f w

dec) and decoder (f w
dec) are given in Table 1, and the next

section describes the internal structure of a Motion Cell.

3.3 Motion Cell

Our recurrent model is constructed by a probabilistic recurrent unit
called a Motion Cell. The design of a Motion Cell is based on an
entangled conditional VAE and a transition block. The VAE models
the spatial dependencies and is additionally conditioned on control
parameters and previous information. The transition block models
the temporal dependencies and is a function of not only the in-
put variable and previous internal state, but also the current latent
variable. By conditioning both spatial and temporal paths on the la-
tent variable, we introduce variability across both dimensions. The

Algorithm 1 This algorithm represents the FORWARD process of
a Motion Cell for a single time-step during training. It takes as
input a motion word wn, control signal cn, and previous internal
state hn−1, and outputs a motion word w̃n and updates the internal
state to hn

function FORWARD(wn, cn, hn−1)
an = fc(cn)
Compute Posterior distribution
µq,n = f µ

enc (fw (wn) ,hn−1,an)

σq,n = f σ
enc (fw (wn) ,hn−1,an)

Sample latent variable from Posterior distribution
(using reparameterization trick)
zn ∼N (zn;µq,n,diagσ

2
q,n)

Compute Prior distribution
µp,n = f µ

prior (hn−1,an)

σp,n = f σ
prior (hn−1,an)

Update internal state
hn = fh (fw (wn) , fz (zn) ,hn−1)
Compute cell output
w̃n = fdec (fz (zn) ,hn−1,an)
return (w̃n, hn, µq,n, σq,n, µp,n, σp,n)

end function

structure of a Motion Cell is illustrated in Fig 3. In the following,
we describe in more detail how Motion Cells operate during train-
ing and generation phases.

3.3.1 Training Phase

Algorithm 1 provides the processing steps of a Motion Cell for a
single time-step during training (the FORWARD function). Unlike
a standard VAE, the posterior is not only conditioned on the input
(observation) but also on the previous internal state and control pa-
rameters. A computationally inexpensive and common choice for
the latent code distribution is a factorized Gaussian distribution

q(zn|wn,hn−1,an) = q(zn|w≤n,z<n,a≤n)

=N (zn;µq,n,diag(σ2
q,n)),

(4)

where zn ∈ RDz is the latent variable, hn ∈ RDh is the internal state
of the Motion Cell which summarizes all the past information up
to step n, and an = fc(cn) ∈ RDa is the feature vector extracted
from control signals. In our model we only used weak attributes
such as action type or style, either included as a component of sam-
ple labelling or inferred by integrated classifiers if the sample is
unlabelled. However, the same methods can be straightforwardly
extended to include other attributes, including dynamic parame-
ters of the motion such as locomotion trajectory. We set Dz = 96,
Dh = 1024, and Da = 8.

The mean, µq,n, and covariance parameters, diag(σq,n), are com-
puted as:

µq,n = f µ
enc (fw (wn) ,hn−1,an) ,

σq,n = f σ
enc (fw (wn) ,hn−1,an) ,

(5)

where f µ
enc and f σ

enc are non-linear complex functions such as mul-
tilayer perceptrons (MLP). fw is also implemented as an MLP for

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

229

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

extracting Motion Word features, which is an essential requirement
for learning complex motions. During training the latent variable is
sampled from the posterior distribution using the reparameteriza-
tion trick [KW14].

zn ∼N
(

zn;µq,n,diagσ
2
q,n

)
(6)

Similar to the posterior distribution, the prior distribution is also
conditioned on the previous internal state and attribute vectors

p(zn|hn−1,an) = p(zn|w<n,z<n,a≤n)

=N (zn;µp,n,diagσ
2
p,n),

(7)

where:

µp,n = f µ
prior (hn−1,an) ,

σp,n = f σ
prior (hn−1,an) .

(8)

where f µ
prior and f σ

prior are implemented as MLPs. Conditioning the
prior and posterior distributions on past information increases the
temporal representational power of the model. Additionally, con-
ditioning them on control parameters helps the model find distinct
modes within the latent space.

In contrast to standard RNNs in which the output distribution is
only conditioned on the previous internal state, the output distribu-
tion in the Motion Cell is also conditioned on the latent variable
and control signals.

p(wn|zn,hn−1,an) = p(wn|w<n,z≤n,a≤n). (9)

In this work, we formulate the VAE decoder function determinis-
tically, such that the reconstructed output, w̃n, is computed by an
MLP:

w̃n = fdec (fz (zn) ,hn−1,an) , (10)

where fz is a feature extraction MLP applied on the latent variable.

The internal state of the Motion Cell is updated by a transition
function given the current input, previous internal state, and current
latent variable:

hn = fh (fw (wn) , fz (zn) ,hn−1) . (11)

Conditioning the internal state on the latent variable makes the tem-
poral transition probabilistic and also helps the model address the
mean collapse problem. Similar to [PFAG19], we used two stacked
Gated Recurrent Units (GRU) with an internal state of size 512
for the transition function where the Motion Cell internal state is
formed by concatenating the internal state of the two GRU cells.
All of the components of the Motion Cell are learned by optimiz-
ing the objective function explained in section 3.5.

3.3.2 Generation Phase

Algorithm 2 provides the processing steps for a single time-step of
a Motion Cell during motion synthesis (the SAMPLE function). At
each time step during generation the latent variable is sampled from
a prior distribution, computed in the same manner as the posterior
distribution sampling done in the training phase (Eq. 7)

zn ∼N
(

zn;µp,n,diagσ
2
p,n

)
. (12)

Algorithm 2 This algorithm represents the SAMPLE process of
a Motion Cell for a single time-step during generation. It takes
control signal cn and previous internal state hn−1, and generates
motion word w̃n and current internal state hn

function SAMPLE(cn, hn−1)
an = fc(cn)
µp,n = f µ

prior (hn−1,an)

σp,n = f σ
prior (hn−1,an)

Sample latent variable from Prior distribution
(using reparameterization trick)
zn ∼N (zn;µp,n,diagσ

2
p,n)

Compute cell output
w̃n = fdec (fz (zn) ,hn−1,an)
Update internal state
hn = fh (fw (w̃n) , fz (zn) ,hn−1)
return (w̃n, hn)

end function

The latent variable is then used with the previous internal state and
control signals to generate the reconstructed Motion Word w̃n (Eq.
10). Finally, the internal state is updated using the previous internal
state, current latent vector, and the reconstructed Motion Word.

hn = fh (fw (w̃n) , fz (zn) ,hn−1) . (13)

3.4 Attributes Classifiers

For each attribute type, we integrate a separate pre-trained classifier
into the generative model. Integrating classifiers into the hierarchi-
cal probabilistic recurrent network serves three purposes. First, they
provide control parameters to the generative model for unlabelled
data, allowing our system to operate in a semi-supervised manner
(dashed arrows in Fig 2). Second, during training, the classifiers
provide additional high-level signals (both from their intermediate
layers as well as the output class inferred by the classifier) to the
objective function. This constrains the generative model to gener-
ate motions semantically coherent with the motion attributes (see
Section 3.5.2). Third, the classifiers can be used for the evaluation
of our generative model (see Section 5).

We implemented all the classifiers using one-dimensional con-
volutional neural networks and trained them on 50% of the training
data. We observed that this amount of training data is sufficient to
label the rest of the data with a high accuracy. Further details of
classifier implementation are given in Section 4.

3.5 Objective Function

We formulate model training as an optimization problem by mini-
mizing the objective function

L= LRVAE +λCLLCL +λAngLAng, (14)

where LRVAE is the recurrent VAE loss equal to the sum of the neg-
ative step-wise variational lower bound over the whole sequence.
We define a new hierarchical geodesic loss for reconstruction part
of LRVAE which is more accurate than the lp norm loss and takes
into account the relative impact of each joint in the kinematic tree
on the final loss. LCL is the complementary loss provided by the

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

230

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

classifiers, found by evaluating the ground-truth and reconstructed
samples in the intermediate and last layer of each classifier. LAng is
the sum of constraints encouraging the model to produce valid joint
representation. We will describe each term in more detail below.

3.5.1 RVAE Objective

The first term in our objective function, LRVAE , is defined as a vari-
ational autoencoder objective summed over all sequence steps as
follows

LRVAE = Eq(z≤N |w≤N ,a≤N)

[N=T/l

∑
n=1
− log p

(
wn|z≤n,w<n,a≤n

)
+λKLKL(q(zn|w≤n,z<n,a≤n)‖p(zn|w<n,z<n,a≤n))

]
.

= Lrec +λKLLKL
(15)

The first term in the above loss is the expected log-likelihood or
reconstruction loss which is usually defined as the distance be-
tween observations and the reconstructed values. We define our
reconstruction term as a custom loss over joint angles rather than
Motion Words to simultaneously train the Motion Word encoder
f w
enc and decoder f w

dec. The second term in the summation is the
KL-divergence between the posterior and the prior at time-step n
weighted by λKL. To prevent optimization process from getting
stuck in an undesirable stable equilibrium we used an annealing
scheduler for λKL where the optimization is performed for a few
epochs with λKL = 0 (warm-up phase), then λKL is slowly in-
creased from 0 to 1 (annealing phase), and then for the last few
epochs we set λKL = 1 (cool-down phase) [BVV∗15]. In the fol-
lowing we describe how the reconstruction loss is formulated.

Geodesic Distance of Joint Angles: Assuming a deterministic
prediction in joint angles, the first term can be defined as a recon-
struction loss. Often, metrics in the Euclidean space such as l1 and
l2 norms are used as the reconstruction loss. However, these met-
rics do not represent the geodesic distance of two rotations which
confuses the training process especially for large angular distances
and at the beginning of the optimization process. To address the
above-mentioned problems in Euclidean distances, we define more
relevant distance functions which respect the intrinsic structure of
3D rotations both for quaternions and rotation matrices. The angu-
lar distance between two unit quaternions q and q̃ is defined as

d(q, q̃) = qq̃−1 = 2arccos(q · q̃). (16)

Since the quaternions double-cover the space of rotations meaning
that quaternions q and −q represent the same rotation we can take
into account this ambiguity by modifying the above function as

d1(q, q̃) = 2arccos(|q · q̃|) (17)

Since arccos is a monotonically decreasing function we can define
an approximate but computationally less expensive distance as

d2(q, q̃) = 1−|q · q̃|. (18)

which only needs 4 multiplication and 1 comparison for each pair
of quaternions [Huy09]. It can be proven that the square of the l2
norm of two unit quaternions is equivalent to Eq.18 for small angu-

lar distances

‖q− q̃‖2 = ‖q‖2 +‖q̃‖2−2(q · q̃)
= 2(1−q · q̃)

(19)

Similarly, we can modify the above measure to disambiguate the
quaternions representations as follows:

d3(q, q̃) = min
{
‖q− q̃‖2 ,‖q+ q̃‖2

}
(20)

All distance measures d1, d2, and d3 address the double-coverage
problem, however, the last two are approximations and do not mea-
sure the exact geodesic distance.

Similarly, for the scenarios where the joint angles are represented
by rotation matrices, we can use the Geodesic distance between a
pair of rotation matrices using logarithm map in SO(3) as follows

d(R, R̃) = ‖ log(R̃R>)‖, (21)

where ‖ log(R̃R>)‖ is a skew-symmetric matrix containing the ro-
tation axis-angle components and therefore ‖ log(R)‖ is the mag-
nitude of the angular distance multiplied by a constant.

Hierarchical Loss: Proposed approaches in human motion mod-
elling represent each human pose either by 3D joint locations in a
global or body’s local coordinate system, or 3D joint angles where,
given the limbs’ length, the final position and orientation of the
body parts are calculated by forward kinematics. Models which
use 3D joints locations usually normalize the skeleton size of the
training samples and define the loss as an lp norm over joint lo-
cations [HSK16, HKS17]. The main problem in such approaches
is that during training and generation they are not exploiting the
constraints imposed by parameterized skeleton and limbs rigidity.
Therefore, the generation phase should be followed by a corrective
re-projection onto a valid character skeleton.

Modelling poses by joint angles inherently follows the con-
straints imposed by parameterized skeleton [THR07, MBR17,
FLFM15,JZSS16]. However, defining loss over joint angles ignore
the amount of influence that each joint contributes to the learning
process and gives all joints equal weights. On the other hand, an
error in a parent joint has more impact on the final pose than the
same amount of error in its child joints. This is due to the fact that
an error in the parent joints propagates through all of its children
down to the leaf nodes in the kinematic tree during forward kine-
matics. Recently, [PFAG19] proposed using joint angles to repre-
sent body pose but defined the loss over joint locations by applying
a differentiable forward kinematics on ground-truth and predicted
joint angles. However, applying forward kinematics at each pose is
computationally expensive especially for long sequences and when
the number of joints is high.

In this work, we propose a hierarchical loss over joint angles
which weights each joint’s error based on its impact on the recon-
structed pose as follows

Lrec(t) =
K

∑
k=1

αkd(Xk
t , X̃

k
t), (22)

where Xk
t and X̃k

t are the ground-truth and the reconstructed joint
angles for joint k at time t and d(.) is one of the distance func-
tions defined in Eq.17, 18, 20, or 21. αk is the impact factor which

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

231

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

weights the impact of the corresponding joint angle on the pose
reconstruction. A rule of thumb for choosing αks is that the child
joint should be weighted with a lower impact factor compared to
its parent joint (αk < αparent(k)) in the kinematic tree. In this work,
we set αk as the maximum path length from joint k down to all of
the connected end-effectors in an average body skeleton. We can
define αk recursively as follows

αk = max
j
(α j + lk− j), j ∈ SCk, (23)

where SCk is the set of all children of joint k, and lk− j is the length
of the bone connecting joints l and j. As suggested by [PFAG19]
we also evaluated the results by applying forward kinematics and
computed the positional loss. In practice, the results were very
close, while the latter took around 35% longer for training.

3.5.2 Classifiers Loss

The classifiers are trained to infer the motion attributes and incor-
porate a complementary loss from the output of intermediate and
final layers. This complementary loss can be defined as

LCL(t) =
C

∑
c=1

∑
l∈Lc

β(c,l)d(l(Xt), l(X̃t)), (24)

where C is the number of classifiers and Lc is the set of layers in cth
classifier. d(l(X), l(X̃)) computes the loss for the output of layer l
given ground-truth and reconstructed samples. β(c,l) is a predefined
weight assigned for each layer. We compute the loss by using the l2
norm for intermediate layers and cross-entropy loss for the attribute
labels. Details of the classifiers’ architecture are given in Table 1.

3.5.3 Intrinsic Rotation Representation Constraints

In order to encourage the model to produce valid rotations, we
add some constraint terms to the final objective function based on
the representation we use for the joint angles. This helps to bet-
ter ensure convergence at the beginning of the training process and
smooths the optimization landscape. Although we normalize the
output of f w

dec, better performance is achieved when these outputs
are very close to valid rotations leaving the role of normalizers as
only a final correction on very small errors.

For rotation matrices we define two constraints: orthogonality
and unit determinant, formulated as follows:

Lang(t) = c1Lorth(t)+ c2Ldet(t)

=
K

∑
k=1

(
c1‖R̃k

t (R̃
k
t)
>− I‖2

2 + c2|det(R̃k
t)−1|

) (25)

where the first term encourages the orthogonality of the output ma-
trices and the second term enforces the model to produce matrices
with a unit determinant. We also added Sigmoid activation to the
output of f w

dec to ensure that the elements of the output matrices are
in the range of [0,1].

For quaternions we only need to set the unit length constraint

Lang = Lq−norm =
K

∑
k=1
|‖q̃k

t ‖2
2−1| (26)

For axis-angle rotation representation we did not set any constraint
as they represent the three degrees of freedom by only three scalars.

Function Architecture

fw, fz 2× [FC(128)+ELU]+FC(96)+ELU
fdec 2× [FC(128)+ELU]+FC(96)+ELU
f µ
enc, f µ

prior 4× [FC(128)+ELU]+FC(96)
f σ
enc, f σ

prior 4× [FC(128)+ELU]+FC(96)+Softplus
fh 2×GRUCell(512)

f w
enc 2× [FC(128)+ELU]+FC(96)+ELU

f w
dec 2× [FC(128)+ELU]+FC(3×DP)

Classifiers 3 × [Conv1D + ReLU] +
AdaptiveAvgPool1D+FC(NC)

Denoising
Autoencoder

2 × [Conv1D + ReLU] +
ConvTranspose1D + ReLU +
ConvTranspose1D

Table 1: The architecture of model components. FC(n) is the
abbreviation for Fully Connected linear layer with n nodes.
Conv1D and ConvTranspose1D are one-dimensional convolution
and transposed convolution layers. AdaptiveAvgPool1D is one-
dimensional adaptive average pooling layer.

4 Implementation and Training

4.1 Dataset

We trained and evaluated our model on a subset of AMASS
[MGT∗19], a very large database of human motion which uni-
fies different marker-based motion capture datasets by representing
them in a common framework. The kinematic tree is represented
by 21 joints and the root (pelvis). We used the MoVi [GMT∗20]
and RuB [Tro02] datasets from AMASS for training and evaluat-
ing the main module and the rest of the AMASS data for training
the denoising autoencoder.

The control parameters in our model are action type and gender.
We used a subset of actions: walking, jogging, jumping, and lifting.
The data were split into 150, 25, and 25 subjects for the purpose of
training, validation, and testing, respectively. All splits contained
male and female subjects in equal proportion.

4.2 Training Process

The details of the model architecture are given in Table 1. All model
components were implemented using the PyTorch library.

For training the hierarchical model (Motion Cell, f w
enc, and f w

dec),
we optimized the objective function in Eq.14 with the joint angle
distances computed by Eq .17 using Adam optimizer [KB14] with a
learning rate of 0.001, no weight decay, and a batch size of 64. We
also set the gradient norm clipping to 0.1 to avoid any exploding
gradients. All weights of the model were initialized using Kaiming
initialization [HZRS15]. We trained our network for 1600 epochs
which took around 2 hours on a GeForce RTX 2080 Ti GPU. The
scheduling of different loss component coefficients during training
can be found in the supplementary material.

For each combination of attributes, the initial internal states of
the GRU cells is learned as a Gaussian distribution. Then each se-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

232

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

quence is initialized by sampling the initial state from the distribu-
tion which corresponds to the required attribute.

We train our recurrent model in a teacher forcing scheme (i.e. the
ground-truth input is provided to the Motion Cell at each time-step
during training). Although this is an effective and fast approach for
training, the model is prone to exposure bias and risks overfitting
to the training data. To address this problem we experimented with
three different mitigating strategies: (i) progressively corrupting in-
put by adding Gaussian noise [FLFM15,JZSS16], (ii) progressively
dropping motion words and exposing the model to its own previ-
ous output [MBR17, PFAG19], and (iii) adding joint-wise dropout
on the input poses [GSAH17]. We achieved the best results when
we used the second strategy with a scheduled drop rate which helps
with the problem of foot skating as well.

We trained all classifiers with similar architecture (Table 1) on
50% of training data using Adam optimizer with a learning rate of
0.005 for 30 epochs. We used Adaptive Average Pooling before the
last fully connected layer to adapt the classifier models to different
input lengths.

We trained the denoising autoencoder separately and on the rest
of the AMASS data. During training 10% of the input dimensions
were chosen randomly and corrupted by Gaussian noise with zero
mean and standard deviation of 0.5. We trained this model for 300
epochs and using the Adam optimizer with a learning rate of 1e−4
with an exponential decay of 0.99 per 10 epoch.

5 Experiments and Evaluation

5.1 Models and Ablations

For the purpose of comparison, we compared our model with Pavllo
et al.’s Quaternet [PFAG19] and Fragkiadaki et al.’s Encoder-
Recurrent-Decoder (ERD) model [FLFM15]. These two models
were trained on the same training data with the same training hyper-
parameter optimization techniques as our model. The initial inter-
nal state was learned in the same way to our model. Sampling the
initial state is the only source of stochasticity in these two models.

For all models, we used a common generation scheme. Each
walking or jogging sequence was generated with 140 frames, and
the first 20 frames were discarded during evaluation (resulting in
4 seconds of motion). For the non-periodic actions (jumping and
lifting), we terminated the generated sequence when they collapse
to the mean pose.

In order to evaluate the influence of model components, we
trained three additional ablated configurations of the our model.
In the first ablated configuration, "Proposed(SL)" (for "Single
Layer"), we removed the hierarchical encoder f w

enc and decoder
f w
dec, and fed the individual poses directly to the recurrent model.

For the second ablation configuration, "Proposed(NL)" (for "Nor-
mal Loss"), we disabled the influence of hierarchical loss by set-
ting all αk coefficients in the Eq. 22 to 1. The last ablation, "Pro-
posed(NC)" (for "No Classifier"), disabled the influence of classi-
fiers on the final loss by setting λCL to zero.

For all evaluated models, we achieved comparable quantita-
tive results between quaternion and rotation matrix representations,
both of which outperformed axis-angle representations. Therefore,
for the rest of the paper, we only report the results for quaternions.

5.2 Quantitative Evaluation

In this work, we evaluate models based on two main criteria: qual-
ity and diversity. We expect the generated samples to be realistic
and coherent with the attributes which are set as control parame-
ters (quality). In addition, we expect the model to generate motions
with high diversity and natural stochasticity while still following
the manifold of realistic motions (diversity). To codify both crite-
ria in our quantitative evaluation we use the Inception Score (IS)
[SGZ∗16] and Fréchet Inception Distance Score (FID) [HRU∗17]
metrics which were originally proposed for image generative mod-
els. Both evaluation metrics have been shown to correlate well with
human evaluation on generated images.

IS is formulated based on two criteria, diversity and quality, de-
fined as follows:

IS = exp
(

EX̃∼pg
DKL(p(a|X̃)‖p(a))

)
(27)

where X̃ is a synthetic sample generated by a generative model,
p(a|X̃) is the conditional attribute distribution of a classifier
which is pre-trained on separate training data, and p(a) =∫

X̃ p(a|X̃)pmodel(X̃) is the marginal attribute distribution. Equation
27 can be also written as IS = exp

(
H(a)−H(a|X̃)

)
, where H(a)

and H(a|X̃) are the attribute entropy and the conditional attribute
entropy, respectively. Generated animations which fulfil the seman-
tics defined by the attributes should have a conditional attribute
distribution p(a|X̃) with low entropy. In other words, the classi-
fier should be very confident about the attribute associated with
the generated animation. On the other hand, we expect our model
to generate a high variety of motions for each attribute class, there-
fore, p(a) should have a high entropy. An estimator of IS as follows

IS≈ exp

(
1
M

M

∑
i=1

DKL

(
p(a|X̃(i)‖p̂(a))

))
, (28)

where X̃(i) is a generated motion sample and p̂(a) =
1
M ∑

M
i=1 p

(
a|X̃(i)

)
is the empirical conditional distribution.

FID captures the similarity between the generated and the real
motion samples. It evaluates the model by comparing the statistics
of a set of generated samples to a set of real motion sequences from
the dataset. Similar to IS, we use a classifier trained on a separate
dataset. Then, the activations of the last feature extraction layer (the
last layer prior to the last fully connected layer) are summarized
as a multivariate Gaussian distribution for synthetic and real data.
The distance between the two distributions is then computed with
Fréchet Distance as follows:

FID = ‖µg−µd‖2
2 +Tr

(
Σg +Σd−2(ΣgΣd)

1
2

)
, (29)

whereN (µg,Σg) andN (µd ,Σd) are the distributions of the activa-
tions in the last feature extraction layer for synthetic and real data,
respectively.

Results: The results of quantitative evaluations are shown in Ta-
ble 2. Using each model, we generated 1000 samples for each com-
bination of attributes (M = 8000 in total). Quaternet and ERD gen-
erated convincing walking and jogging samples. However, since the
only source of stochasticity is the initial hidden state, these models
fail to generate a diverse set of sequences (ERD’s performance was

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

233

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Model IS ↑ FID ↓

Quaternet [PFAG19] 5.12 92.31
ERD [FLFM15] 5.91 86.42
Proposed(SL) 6.45 31.41
Proposed(NL) 7.11 17.3
Proposed(NC) 7.43 11.92
Proposed 7.52 10.45

Real data 7.64 0

Table 2: Results from quantitative evaluations using IS (higher
score is better) and FID (lower score is better).

(a) Samples for different genders (b) Samples for different actions

Figure 4: Visualizing the activations of the last layer of action
classifier projected onto two dimensions using t-sne for real data
(circles) and data synthesized data (crosses) by our model. As
can be seen, synthesized samples strongly coincide with the cor-
responding clusters formed by real data.

slightly better due to its hierarchical structure yielding higher diver-
sity at the beginning of the motions). In addition, they usually failed
to generate a complete sequence for non-periodic motion such as
lifting and were regressed to the mean pose after 70− 80 frames.
Among ablation configurations, Proposed(SL) had the lowest per-
formance showing the significant influence of hierarchical struc-
ture in generating diverse motions (higher H(a)). The lower scores
for the other two ablation configurations (Proposed(NL) and Pro-
posed(NC)) indicate the impact of our hierarchical loss structure
and the effect of integrating classifiers into the loss, respectively,
on the conditional attribute entropy and higher motion quality.

5.3 Qualitative Evaluation

To qualitatively evaluate how realistic and natural the synthetic an-
imations are we also performed an experiment for subjective eval-
uation. All six evaluated models in the previous section were used
in this experiment as well. We sampled five sequences for each of
the four action types from the synthesized sequences of each model
resulting in 6∗4∗5 = 120 synthesized samples which were added
to 20 motion sequences from real data. 20 human observers rated
each motion sample from 1 (completely unrealistic) to 10 (com-
pletely realistic). The motion clips were displayed to the raters in a
randomized order. Raters were asked to rate each animation after it
was displayed completely, and no information about the aim of the
experiment was given to the raters. We used a few motion clips for
the purpose of training the raters before each experiment.

Results: The results of our qualitative evaluation are illustrated
in Table 3. The qualitative results correlate well with the quan-

titative results (Pearson correlations of 0.86 and −0.95 with IS
and FID, respectively). Quaternet and ERD achieved the lowest
ratings for non-periodic actions (jumping and lifting) since they
usually fail to complete these motions and instead regressed to the
mean pose in the last frames. Among ablation configurations, Pro-
posed(NL) achieved the lowest mean rating, which shows the im-
pact of hierarchical loss on having more realistic motions. Although
the main goal of our hierarchical structure is to improve the diver-
sity of motions, the lower ratings achieved by Proposed(SL) com-
pared to the main model nevertheless demonstrates the effective-
ness of our hierarchical architecture even on short sequences. Sim-
ilar to the quantitative evaluation, disabling the hierarchical struc-
ture of the loss function (Proposed(NL)) resulted in decreased rat-
ings, suggesting the importance of classifiers to better learn action
modes on the motion manifold.

Figure 4 shows the visualization of motion sequences in a two-
dimensional space. We sampled 20 sequence for each action type
and gender from real data (circles) and the sequences generated by
our model (crosses), extracting the activations from the last layer of
classifiers. We then applied t-sne [MH08] dimensionality reduction
to project the activations onto two dimensions. As seen, our model
generates sequences with similar diversity to real data while still
accurately separating the modes for each action type and gender.

5.4 Discussion

In this work, we propose a motion generative model with a focus on
preserving the stochastic nature of human motion while generating
convincing and natural spatiotemporal motion sequences. The pro-
posed model uses a deep hierarchical recurrent framework which
can further be tuned via weak control signals such as action type.
Each sequence is generated using a probabilistic recurrent structure
which models the underlying stochasticity by injecting noise in an
abstract level. We also propose a novel hierarchical geodesic loss
which incorporates the structural information of the kinematic tree
and compares joint angles based on angular distances, yielding a
better representation of error and more accurate learning.

Limitations and Future Work. The proposed architecture was im-
plemented for four different action types in addition to the gen-
der attribute. Extending the model to include more actions is not
straightforward and is prone to mean collapse. Different strategies
can possibly be exploited to increase the capacity of the architec-
ture for more action types or other additional semantics. One pos-
sible solution is to increase the network capacity, though we expect
this may make training more difficult. Another solution could be
to train a separate network for each subset of attributes or actions,
which may serve as a feasible solution since our network is rel-
atively small (around 30MB). Finally, providing additional strong
control signals such as body contact with the environment could
serve to decrease the uncertainty in the motion generation phase
and prevent it from collapsing to the mean pose. These control sig-
nals could be provided manually by the animator or by a separate
network which is trained on the data [PFAG19, HKS17].

In our recurrent model, each cell is represented as a VAE con-
ditioned on the previous internal state. However, VAEs are based
on maximizing a log-likelihood lower bound which might give a
suboptimal solution for the true log-likelihood. We also made a

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

234

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Actions

Model Walking Jogging Jumping Lifting Average

Quaternet [PFAG19] 9.31±0.25 9.45±0.22 6.27±0.31 5.87±0.28 7.73±0.26
ERD [FLFM15] 8.97±0.33 8.32±0.30 6.31±0.28 5.71±0.23 7.31±0.28
Proposed(SL) 9.15±0.24 9.26±0.22 8.43±0.37 8.62±0.18 8.87±0.25
Proposed(NL) 9.03±0.29 8.97±0.21 8.25±0.19 8.30±0.32 8.64±0.26
Proposed(NC) 9.32±0.27 9.42±0.30 8.95±0.31 8.92±0.34 9.15±0.27
Proposed 9.38±0.13 9.35±0.12 9.13±0.28 9.27±0.27 9.28±0.21

Real data 9.64±0.13 9.81±0.24 9.62±0.1 9.53±0.21 9.65±0.17

Table 3: Results for qualitative evaluation. The results show the average scores assigned to a set of motions sampled from each action set
and from each model, where 1 corresponds to completely unrealistic and 10 corresponds to completely realistic.

strong assumption about the posterior distribution by modelling
it as a standard isotropic Gaussian, which could increase the er-
ror in the posterior approximation. It is possible that normalizing
flows [KPB19, PNR∗19] could be exploited to improve this aspect
of the model. The approximate posterior distribution could be pa-
rameterized by a network of normalizing flows which is applied to
the output of the VAE decoder; this has been shown to provide a
tighter lower bound for other applications [RM15]. Alternatively,
the VAE module in our Motion Cell could potentially be replaced
entirely with a conditional normalizing flow network in which the
temporal dependencies are modelled by conditioning the prior on
the previous internal state.

References

[ACC13] OSU ACCAD. ACCAD. .https://accad.osu.edu/
research/motion-lab/system-data, May 2013. 14

[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion generation
from examples. ACM Transactions on Graphics (TOG) 21, 3 (2002),
483–490. 2

[AKH19] AKSAN E., KAUFMANN M., HILLIGES O.: Structured pre-
diction helps 3d human motion modelling. In Proceedings of the IEEE
International Conference on Computer Vision (2019), pp. 7144–7153. 2,
3

[AWL∗20] ABERMAN K., WENG Y., LISCHINSKI D., COHEN-OR D.,
CHEN B.: Unpaired motion style transfer from video to animation. arXiv
preprint arXiv:2005.05751 (2020). 3

[BKL18] BARSOUM E., KENDER J., LIU Z.: Hp-gan: Probabilistic 3d
human motion prediction via gan. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops (2018),
pp. 1418–1427. 3

[BVV∗15] BOWMAN S. R., VILNIS L., VINYALS O., DAI A. M.,
JOZEFOWICZ R., BENGIO S.: Generating sentences from a continuous
space. arXiv preprint arXiv:1511.06349 (2015). 7

[CKD∗15] CHUNG J., KASTNER K., DINH L., GOEL K., COURVILLE
A. C., BENGIO Y.: A recurrent latent variable model for sequential data.
In Advances in neural information processing systems (2015), pp. 2980–
2988. 2, 3, 5

[CVMG∗14] CHO K., VAN MERRIËNBOER B., GULCEHRE C., BAH-
DANAU D., BOUGARES F., SCHWENK H., BENGIO Y.: Learning phrase
representations using rnn encoder-decoder for statistical machine trans-
lation. arXiv preprint arXiv:1406.1078 (2014). 13

[DKB14] DINH L., KRUEGER D., BENGIO Y.: Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516 (2014).
3

[FLFM15] FRAGKIADAKI K., LEVINE S., FELSEN P., MALIK J.: Re-
current network models for human dynamics. In Proceedings of the IEEE
International Conference on Computer Vision (2015), pp. 4346–4354. 1,
2, 7, 9, 10, 11, 13

[GMT∗20] GHORBANI S., MAHDAVIANI K., THALER A., KORDING
K., COOK D. J., BLOHM G., TROJE N. F.: Movi: A large multipurpose
motion and video dataset. arXiv preprint arXiv:2003.01888 (2020). 2, 8

[GSAH17] GHOSH P., SONG J., AKSAN E., HILLIGES O.: Learning
human motion models for long-term predictions. In 2017 International
Conference on 3D Vision (3DV) (2017), IEEE, pp. 458–466. 9

[HAB19] HENTER G. E., ALEXANDERSON S., BESKOW J.: Moglow:
Probabilistic and controllable motion synthesis using normalising flows.
arXiv preprint arXiv:1905.06598 (2019). 3

[HHS∗17] HABIBIE I., HOLDEN D., SCHWARZ J., YEARSLEY J., KO-
MURA T., SAITO J., KUSAJIMA I., ZHAO X., CHOI M.-G., HU R.,
ET AL.: A recurrent variational autoencoder for human motion synthe-
sis. In BMVC (2017). 3

[HKS17] HOLDEN D., KOMURA T., SAITO J.: Phase-functioned neural
networks for character control. ACM Transactions on Graphics (TOG)
36, 4 (2017), 1–13. 1, 3, 7, 10

[HRU∗17] HEUSEL M., RAMSAUER H., UNTERTHINER T., NESSLER
B., HOCHREITER S.: Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium. In Advances in neural information
processing systems (2017), pp. 6626–6637. 2, 9

[HS97] HOCHREITER S., SCHMIDHUBER J.: Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780. 13

[HSK16] HOLDEN D., SAITO J., KOMURA T.: A deep learning frame-
work for character motion synthesis and editing. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 1–11. 1, 3, 7

[Huy09] HUYNH D. Q.: Metrics for 3d rotations: Comparison and analy-
sis. Journal of Mathematical Imaging and Vision 35, 2 (2009), 155–164.
7

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(2015), pp. 1026–1034. 8

[JZSS16] JAIN A., ZAMIR A. R., SAVARESE S., SAXENA A.:
Structural-rnn: Deep learning on spatio-temporal graphs. In Proceed-
ings of the ieee conference on computer vision and pattern recognition
(2016), pp. 5308–5317. 1, 2, 3, 7, 9, 13

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014). 8

[KD18] KINGMA D. P., DHARIWAL P.: Glow: Generative flow with in-
vertible 1x1 convolutions. In Advances in Neural Information Processing
Systems (2018), pp. 10215–10224. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

235

. https://accad.osu.edu/ research/motion-lab/system-data
. https://accad.osu.edu/ research/motion-lab/system-data

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

[KG04] KOVAR L., GLEICHER M.: Automated extraction and parame-
terization of motions in large data sets. ACM Transactions on Graphics
(ToG) 23, 3 (2004), 559–568. 2

[KPB19] KOBYZEV I., PRINCE S., BRUBAKER M.: Normalizing
flows: An introduction and review of current methods. arXiv preprint
arXiv:1908.09257 (2019). 11

[KW14] KINGMA D. P., WELLING M.: Auto-encoding variational
bayes. In 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings (2014), Bengio Y., LeCun Y., (Eds.). URL: http://
arxiv.org/abs/1312.6114. 6, 13

[KW∗19] KINGMA D. P., WELLING M., ET AL.: An introduction to
variational autoencoders. Foundations and Trends R© in Machine Learn-
ing 12, 4 (2019), 307–392. 13

[LLL18] LEE K., LEE S., LEE J.: Interactive character animation by
learning multi-objective control. ACM Transactions on Graphics (TOG)
37, 6 (2018), 1–10. 2

[LMR∗15] LOPER M., MAHMOOD N., ROMERO J., PONS-MOLL G.,
BLACK M. J.: SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia) 34, 6 (Oct. 2015), 248:1–248:16. 14

[LWH∗12] LEVINE S., WANG J. M., HARAUX A., POPOVIĆ Z.,
KOLTUN V.: Continuous character control with low-dimensional em-
beddings. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–10.
3

[LZCVDP20] LING H. Y., ZINNO F., CHENG G., VAN DE PANNE M.:
Character controllers using motion vaes. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 40–1. 3, 5

[MBR17] MARTINEZ J., BLACK M. J., ROMERO J.: On human mo-
tion prediction using recurrent neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2017),
pp. 2891–2900. 1, 2, 3, 7, 9, 13

[MGT∗19] MAHMOOD N., GHORBANI N., TROJE N. F., PONS-MOLL
G., BLACK M. J.: Amass: Archive of motion capture as surface shapes.
In Proceedings of the IEEE International Conference on Computer Vi-
sion (2019), pp. 5442–5451. 2, 8

[MH08] MAATEN L. V. D., HINTON G.: Visualizing data using t-sne.
Journal of machine learning research 9, Nov (2008), 2579–2605. 10

[MK05] MUKAI T., KURIYAMA S.: Geostatistical motion interpolation.
In ACM SIGGRAPH 2005 Papers. 2005, pp. 1062–1070. 2

[Muk11] MUKAI T.: Motion rings for interactive gait synthesis. In Sym-
posium on Interactive 3D Graphics and Games (2011), pp. 125–132. 2

[PALvdP18] PENG X. B., ABBEEL P., LEVINE S., VAN DE PANNE M.:
Deepmimic: Example-guided deep reinforcement learning of physics-
based character skills. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1–14. 5

[PFAG19] PAVLLO D., FEICHTENHOFER C., AULI M., GRANGIER D.:
Modeling human motion with quaternion-based neural networks. Inter-
national Journal of Computer Vision (2019), 1–18. 1, 3, 6, 7, 8, 9, 10,
11, 13

[PNR∗19] PAPAMAKARIOS G., NALISNICK E., REZENDE D. J., MO-
HAMED S., LAKSHMINARAYANAN B.: Normalizing flows for prob-
abilistic modeling and inference. arXiv preprint arXiv:1912.02762
(2019). 11

[RM15] REZENDE D. J., MOHAMED S.: Variational inference with nor-
malizing flows. arXiv preprint arXiv:1505.05770 (2015). 3, 11

[SB06] SIGAL L., BLACK M. J.: Humaneva: Synchronized video and
motion capture dataset for evaluation of articulated human motion.
Brown Univertsity TR 120 (2006). 2

[SCNW19] SMITH H. J., CAO C., NEFF M., WANG Y.: Efficient neural
networks for real-time motion style transfer. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 2, 2 (2019), 1–17. 3

[SGZ∗16] SALIMANS T., GOODFELLOW I., ZAREMBA W., CHEUNG
V., RADFORD A., CHEN X.: Improved techniques for training gans.
In Advances in neural information processing systems (2016), pp. 2234–
2242. 2, 9

[SHP04] SAFONOVA A., HODGINS J. K., POLLARD N. S.: Synthesizing
physically realistic human motion in low-dimensional, behavior-specific
spaces. ACM Transactions on Graphics (ToG) 23, 3 (2004), 514–521. 2

[SLY15] SOHN K., LEE H., YAN X.: Learning structured output rep-
resentation using deep conditional generative models. In Advances in
neural information processing systems (2015), pp. 3483–3491. 13

[SZKS19] STARKE S., ZHANG H., KOMURA T., SAITO J.: Neural state
machine for character-scene interactions. ACM Trans. Graph. 38, 6
(2019), 209–1. 3

[SZKZ20] STARKE S., ZHAO Y., KOMURA T., ZAMAN K.: Local
motion phases for learning multi-contact character movements. ACM
Transactions on Graphics 39 (06 2020). doi:10.1145/3386569.
3392450. 3

[TH00] TANCO L. M., HILTON A.: Realistic synthesis of novel human
movements from a database of motion capture examples. In Proceedings
Workshop on Human Motion (2000), IEEE, pp. 137–142. 2

[TH09] TAYLOR G. W., HINTON G. E.: Factored conditional restricted
boltzmann machines for modeling motion style. In Proceedings of
the 26th annual international conference on machine learning (2009),
pp. 1025–1032. 2

[THR07] TAYLOR G. W., HINTON G. E., ROWEIS S. T.: Modeling
human motion using binary latent variables. In Advances in neural in-
formation processing systems (2007), pp. 1345–1352. 2, 7

[THR11] TAYLOR G. W., HINTON G. E., ROWEIS S. T.: Two
distributed-state models for generating high-dimensional time series.
Journal of Machine Learning Research 12, Mar (2011), 1025–1068. 2

[Tro02] TROJE N. F.: Decomposing biological motion: A framework for
analysis and synthesis of human gait patterns. Journal of vision 2, 5
(2002), 2–2. 8

[WCX19] WANG Z., CHAI J., XIA S.: Combining recurrent neural net-
works and adversarial training for human motion synthesis and control.
IEEE Transactions on Visualization and Computer Graphics (2019). 2

[WHF06] WANG J., HERTZMANN A., FLEET D. J.: Gaussian process
dynamical models. In Advances in neural information processing sys-
tems (2006), pp. 1441–1448. 3

[WHSZ19] WANG H., HO E. S., SHUM H. P., ZHU Z.: Spatio-temporal
manifold learning for human motions via long-horizon modeling. IEEE
Transactions on Visualization and Computer Graphics (2019). 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

236

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1145/3386569.3392450

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

A Supplementary Material

Recurrent Neural Networks

Most of proposed methods [PFAG19, JZSS16, FLFM15, MBR17]
for modelling human motion are based on recurrent neural net-
works (RNN). An RNN [CVMG∗14, HS97] models data recur-
sively by decomposing the probability distribution of the sequence
over time

Pθ (x1, . . . ,xT) =
T

∏
t=2

Pθ (xt |x<t)Pθ (x1) , (30)

where θ is the set of model parameters and Pθ (x1, . . . ,xT) is the
likelihood of sequence x1:T . Each time step includes two main
operations: updating the hidden internal state of the model which
summarizes the past information, and a mapping from the hidden
state to the next element in the sequence. Therefore, at each time-
step we have

ht = fh(ht−1,xt) (31)

Pθ

(
xt+1|x≤t

)
= Pθ (xt+1|ht)

= fo(ht),
(32)

where ht is the internal hidden state and fh is the non-linear updat-
ing function parameterized by θ. fo is the mapping from internal
state to the output and usually characterized by another network.

Variational Autoencoder

The Variational Autoencoder (VAE) [KW14] is a class of deep
generative models which optimize a deep latent-variable model
(DLVM) jointly with the inference model using a gradient-based
optimizer. DLVM is a class of models with a simple prior pθ(z)
and complex marginal pθ(x) and likelihood pθ(x|z) distributions,
where z is a latent variable and x is the observed variable. VAEs
approximate the intractable posterior inference pθ(z|x) by intro-
ducing a parametric inference function qφ(z|x). Variational param-
eters φ and the generative parameters θ can be optimized jointly by
maximizing the evidence lower bound (ELBO) defined as follows:

Eθ,φ(x) = Ez∼qφ(z|x) log
pθ(x,z)
qφ(z|x)

= Ez∼qφ(z|x) log pθ(x|z)−DKL
(
qφ(z|x)‖pθ(z)

)
.

(33)

The first term is the expected log-likelihood or reconstruction term
which is estimated by Monte Carlo estimator and reparameteriza-
tion trick [KW14]. The second term, DKL

(
qφ(z|x)‖pθ(z)

)
, is the

Kullback-Leibler divergence between qφ(z|x) and pθ(z) which acts
as a specific regularization term [KW∗19]. The combination of in-
ference qφ and generative pθ models form a kind of autoencoder
where the first term in Eq.33 is called the reconstruction term and
the second term is called the regularization term. Vanilla VAEs suf-
fer when the space of outputs is multi-modal, resulting in blurry
generated samples. Sohn et al. [SLY15] proposed conditional VAE
(CVAE) as an extension of VAE for learning structured output pre-
dictions simply by conditioning the generative process on an con-
trol variable. CVAE not only helps to address the problem of one-
to-many mapping but also allows the model to control the gener-
ated sample class and/or characteristics by the control variable. The

ELBO for CVAE is formulated as follows:

Eθ,φ(x,a)=Ez∼qφ(z|x,a) log pθ(x|z,a)−DKL
(
qφ(z|x,a)‖pθ(z|a)

)
,

(34)
where a is the input variable.

RVAE Objective Function

Here we explain how the RVAE objective function in Eq. 15 is de-
rived. We can consider the whole sequence as a single sample and
write the ELBO similar to Eq. 34 as follows:

E = Eqφ(z≤N |w≤N ,a≤N) log
pθ(w≤N ,z≤N |a≤N)

qφ(z≤N |w≤N .a≤N)
(35)

By factorizing pθ and qφ across time (similar to 30) we have

E = Eqφ(z≤N |w≤N ,a≤N) log
∏

N
n=1 pθ(wn,zn|w<n,z<n,a≤n)

∏
N
n=1 qφ(zn|z<nw<n.a≤n)

= Eqφ(z≤N |w≤N ,a≤N) log
N

∏
n=1

pθ(wn|w<n,z≤n,a≤n)pθ(zn|z<n,a≤n)

qφ(zn|z<nw<n.a≤n)

= Eqφ(z≤N |w≤N ,a≤N)

[N

∑
n=1

log pθ

(
wn|w<n,z≤n,a≤n

)
−λKLKL(qφ(zn|w≤n,z<n,a≤n)‖pθ(zn|w<n,z<n,a≤n))

]
,

(36)
where the RVAE objective is the negative value of the above ELBO.

More Training and Synthesis Details

Scheduling Loss Coefficients

Figure 1 shows how we set the schedulers for loss coefficients in
Eq. 14. We set an annealing scheduler for λKL to address the KL
vanishing problem. We also set λCL to zero for the beginning of
the training and then gradually increase it. These two strategies al-
low the model to focus more on capturing useful information for
reconstruction during the initial epochs.

Hardware and Software

We implemented the framework using PyTorch library. We also
used a single GeForce RTX 2080 Ti GPU for parallel computing
both in training and synthesis.

Figure 1: Scheduling the coefficients for each term in Eq. 14 dur-
ing training.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

237

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Visualization and Sequence Samples

The visualization of motion sequences for conducting qualitative
experiments was shown as stick figures. For the demo, we used
Unity to visualize SMPL [LMR∗15] model with average body
shape for both females and males.

We present representative samples of the output of our model in
Figure 2. You can see by comparing the generated samples (orange)
to real samples (blue), our synthesized samples look very natural
and from the same action cluster. For more samples please check
out our video demo.

To show the ability of our framework in learning transitions be-
tween different actions, we also trained the network on ACCAD
database [ACC13] which contains samples of transition between
jogging and walking. The examples of generated samples are in-
cluded in the video demo.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

238

S. Ghorbani, C. Wloka, A. Etemad, M. A. Brubaker, & N. F. Troje / Probabilistic Character Motion Synthesis using a Hierarchical DLVM

Figure 2: Samples of real (blue) and synthetic (orange) motion sequences.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

239

