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1. Introduction

Self-localization is key for building autonomous sys-
tems that are able to help humans in everyday tasks. In
this paper we are interested in building affordable and ro-
bust solutions to self-localization for the autonomous driv-
ing scenario. Currently, the leading technology in this set-
ting is GPS. While being a fantastic aid for human driving,
it has important limitations in the context of autonomous
systems. Notably, the GPS signal is not always available,
and its localization can become imprecise (e.g., in the pres-
ence of skyscrapers, tunnels or jammed signals). While this
might still be viable for human driving, consequences can
be catastrophic for self-driving cars.

To provide alternatives to GPS localization, place recog-
nition approaches have been developed which assume that
image or depth features which identify the relevant loca-
tions are stored in a database, and cast the localization prob-
lem as a retrieval task. In combination with GPS, impres-
sive results have been demonstrated (e.g., the Google self-
driving car) but it remains unclear if maintaining an up-to-
date world representation will be feasible given the compu-
tation, memory and communication requirements. Further-
more, these solutions require that all locations to be local-
ized have been visited before.

In contrast to the above mentioned approaches, we tackle
the problem of self-localization in places that we have not
been seen before. We take inspiration from humans, which
perform this task while having access to only a rough car-
tographic description of the environment, i.e., a map. We
propose to exploit the ready availability of community-
developed maps from the OpenStreetMap (OSM) project,
for the task of vision-based localization. The OSM maps
are detailed and freely available, making this an inexpen-
sive solution. Towards this goal, we derive a probabilistic
map localization approach that uses visual odometry esti-
mates and OSM data as the only inputs. We demonstrate
the effectiveness of our approach on a variety of challeng-
ing scenarios making use of the recently released KITTI vi-
sual odometry benchmark [4]. Our experiments show that
we are able to localize after only a few seconds of driving
with an accuracy of 3 meters on a 18km2 map containing

Figure 1. Visual Self-Localization: We demonstrate localizing
a vehicle with an average accuracy of 3.1m within a map of ∼
2, 150km of road using only visual odometry measurements and
freely available maps. In this case, localization took less than 21
seconds. Grid lines are every 2km.

2, 150km of drivable roads.
Early approaches for map localization [2, 3, 6, 8] made

use of Monte Carlo methods and the Markov assumption
to maintain a sample-based posterior representation of the
agent’s pose. However, they are generally restricted to
small-scale environments and low-noise laser-scan observa-
tions which provided strong location cues. In contrast, our
method operates on large map areas (up to 18km square) us-
ing only noisy measurements of egomotion, computed us-
ing weak location cues of visual odometry [5, 7].

2. Visual Localization
We propose to use roof-mounted cameras to self-localize

a driving vehicle. The only other information we have is
a map of the environment in which the vehicle is driving
which contains streets as connected line segments. We ex-
ploit visual odometry in order to obtain the trajectory of the
vehicle. As this trajectory is often too noisy or ambigu-
ous for direct shape matching, we propose a probabilistic
approach to self-localization that employs visual odometry
measurements in order to determine the instantaneous posi-
tion and orientation of the vehicle in a given map.

The map data is represented by a directed graph where
nodes represent street segments and edges define the con-
nectivity of the roads. We define the position and orienta-
tion of a vehicle in the map in terms of the street segment
u that the vehicle is on, the distance from the origin of that
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00 01 02 03 04 05 06 07 08 09 10 Average

Position Error M 15.6m * 8.1m 18.8m * 5.6m * 15.5m 45.2m 5.4m * 18.4m
S 2.1m 3.8m 4.1m 4.8m * 2.6m * 1.8m 2.4m 4.2m 3.9m 3.1m

Heading Error M 2.0◦ * 1.5◦ 2.4◦ * 2.0◦ * 1.3◦ 10.3◦ 1.6◦ * 3.6◦

S 1.2◦ 2.7◦ 1.3◦ 1.6◦ * 1.4◦ * 1.9◦ 1.2◦ 1.3◦ 1.3◦ 1.3◦
Table 1. Sequence Errors: Average position and heading errors for 11 training sequences. “M” and “S” indicate monocular and stereo
odometry. All averages are computed over localized frames and “*” indicates sequences which did not localize.

street segment d and the offset of the local street heading θ.
We define the state of the model at time t to be xt =

(ut, st) where ut is the identity of the current street and st
is the position and orientation of the vehicle on that street at
the current and previous frames. The motion dynamics use
a simple second order linear model with additive Gaussian
noise. Visual odometry observations at time t, yt, measure
the linear and angular displacement from time t− 1 to time
t. The observations are modelled using a linear model with
additive Gaussian noise. Street transitions occur probabilis-
tically, where the probability of transitioning from the cur-
rent street to a connected one is a a sigmoid-like function of
the relative distance to the start of the next street.

Given this model we wish to compute the filter-
ing distribution, p(xt|y1:t) = p(st|ut,y1:t)p(ut|y1:t),
where p(ut|y1:t) is a discrete distribution over streets and
p(st|ut,y1:t) is a continuous distribution over the position
and orientation on a given street which we represent using a
Mixture of Gaussians. Inference exploits the Gauss-Linear
nature of dynamics when possible (i.e., in the absence of
street transitions) and exploit efficient approximations oth-
erwise. This is coupled with a simplification procedure,
which reduces the number of mixture components, with-
out loosing significant details. Our inference algorithm is
easily parallelized and can run at frame rate on average for
moderate sized maps. Full details are available in [1].

3. Results
To evaluate our approach in realistic situations, we per-

formed experiments on the recently released KITTI bench-
mark for visual odometry [4]. We utilize the 11 training
sequences for quantitative evaluation (where ground truth
GPS data is available). The visual odometry input to our
system is computed using LIBVISO2 [5], a freely available
library for monocular and stereo visual odometry. For il-
lustration purposes, here we extracted mid-size regions of
OpenStreetMap data which included the true trajectory and
the surrounding region. On average, they cover an area of
2km2 and contain 47km of drivable roads. It is important
to note that our method also localizes successfully on much
larger maps, see Fig. 1 for example, which covers 18km2

and contains 2,150km of drivable roads. Quantitative re-
sults can be found in Table 1. Here, “M” and “S” indicate
results using monocular and stereo visual odometry respec-
tively. In addition, we computed odometry measurements

from the GPS trajectories (entry “G” in the table) and ran
our algorithm using the parameters for the stereo data.

The accuracy of position and heading estimates is not
well defined until the posterior has converged to a single
mode. Thus, we compute accuracy once a sequence has
been localized. We define a sequence to be localized when
for at least five seconds there is a single mode in the poste-
rior and its distance to the ground truth position is less than
20 meters. Once the criteria for localization is met, all sub-
sequent frames are considered localized. Errors in global
position and heading of the MAP state for localized frames
were computed using the GPS data as ground truth.

Overall, we are able to estimate the position and heading
to 3.1m and 1.3◦ using stereo visual odometry. Notice that
simply projecting the GPS data onto the nearest road seg-
ment in the map produces an error of 1.44m! These results
also outperform typical consumer grade navigation systems
which offer accuracies of around 10m. Using monocular
odometry as input performs worse, but is still accurate to
18.4m and 3.6◦, once it is localized. However, due to its
stronger drift, it fails to localize in some cases as in se-
quence 01 which contains highway driving only, where high
speeds and sparse visual features results in an accumulated
odometry error of more than 500m.
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