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Flows and INNs in Computer Vision: CVPR 2021 Edition

- DeFlow: Learning Complex Image Degradations From Unpaired Data With Conditional Flows by Valentin \Wolf,
Andreas Lugmayr, Martin Danelljan, Luc Van Gool, Radu Timofte

- ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows by Jie An, Siyu Huang, Yibing Song, Dejing
Dou, Wei Liu, Jiebo Luo

- iIVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression by Shifeng Zhang, Chen
/Zhang, Ning Kang, Zhenguo Li.

- Generative Classifiers as a Basis for Trustworthy Image Classification by Radek Mackowiak, Lynton Ardizzone,
Ullrich Kothe, Carsten Rother

- Flow-Based Kernel Prior With Application to Blind Super-Resolution by Jingyun Liang, Kai Zhang, Shuhang Gu, Luc Van Gool, Radu Timofte
- Autoregressive Stylized Motion Synthesis With Generative Flow by Yu-Hui Wen, Zhipeng Yang, Hongbo Fu, Lin Gao, Yanan Sun, Yong-Jin Liu

- Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis by Karren Yang, Samuel Goldman, Wengong Jin, Alex X. Lu, Regina Barzilay, Tommi Jaakkola,
Caroline Uhler

- Invertible Image Signal Processing by Yazhou Xing, Zian Qian, Qifeng Chen

- Invertible Denoising Network: A Light Solution for Real Noise Removal by Yang Liu, Zhenyue Qin, Saeed Anwar, Pan Ji, Dongwoo Kim, Sabrina Caldwell, Tom Gedeon
- Large-Capacity Image Steganography Based on Invertible Neural Networks by Shao-Ping Lu, Rong Wang, Tao Zhong, Paul L. Rosin

- Quality-Agnostic Image Recognition via Invertible Decoder by Insoo Kim, Seungju Han, Ji-won Baek, Seong-Jin Park, Jae-Joon Han, Jinwoo Shin

- Neural Parts: Learning Expressive 3D Shape Abstractions With Invertible Neural Networks by Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, Sanja Fidler



Noise Flow:
Noise Modelling with Conditional Normalizing Flows

Abdelrahman
Abdelhamed

Michael S.
Brown
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Camera Noise

Camera: Pixel
ISO: 800
Exposure: 1/350 s




Camera Noise
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Camera Noise
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Camera Noise
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Camera Noise

Noise

Signal

. Photon noise |

Electronic noise (fixed pattern, dark
current, cross-talk, defective pixels, etc.)

. Gained noise
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learn a convenient, compact model of camera noise
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Noise Flow

Gaussian Noise Camera Noise
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Smartphone Image Denoising Dataset (SIDD)

A High-Quality Denoising Dataset for Smartphone Cameras

Abdelrahman Abdelhamed
York University

kamel(@eecs.yorku.ca

Abstract

The last decade has seen an astronomical shift from
imaging with DSLR and point-and-shoot cameras to imag-
ing with smartphone cameras. Due to the small aperture
and sensor size, smartphone images have notably more
noise than their DSLR counterparts. While denoising for
smartphone images is an active research area, the research
community currently lacks a denoising image dataset rep-
resentative of real noisy images from smartphone cameras
with high-quality ground truth. We address this issue in
this paper with the following contributions. We propose a
systematic procedure for estimating ground truth for noisy
images that can be used to benchmark denoising perfor-
mance for smartphone cameras. Using this procedure, we
have captured a dataset — the Smartphone Image Denoising
Dataset (SIDD) — of ~30,000 noisy images from 10 scenes
under different lighting conditions using five representative

Stephen Lin
Microsoft Research

stevelin@microsoft.com

Michael S. Brown
York University

mbrown(deecs.yorku.ca
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Figure 1: An example scene imaged with an LG G4 smart-
phone camera: (a) a high-ISO noisy image; (b) same scene
captured with low ISO — this type of image 1s often used as
ground truth for (a); (c¢) ground truth estimated by [25]; (d)
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Results on SIDD

Denoising with DNCNN

PSNR (dB)
Gaussian 43.63 0.968
Camera NLF 44.99 0.982
NoiseFlow 48.52 0.992
Real 47.08 0.989

(

a) Real noisy

PSNR = 52.60

PSNR = 48.85

PSNR = 58.52

PSNR = 44.81

(b) Gaussian

(c) Camera
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Noise Flow tl:dr

Noise Flow Is a realistic and practical model of camera noise In real images

Domain knowledge to guide construction of model to capture signal dependence, ISO gain and camera
specific characteristics

NFs to learn other aspects which are unknown or difficult to model
Abdelrahman

Future Directions Abdethamed
Noise modelling for other sensors and imaging domains :
- Other aspects of camera noise (fixed pattern noise, camera specific behaviour, etc)
Realistic camera noise in other applications Michael §.

Brown

|
Full details in Abaelhamed et al ICCV 2019 t IU BOREALIS Al
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Wavelet Flow:
Fast [raining of High Resolution Normalizing Flows

Jason J. Yu

Konstantinos G.
Derpanis
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Scale Structure in Generative Models

Existing NF architectures lack explicit notion of signal scale
Models trained at different resolutions are inconsistent
- Training Is expensive

GANs and VAEs have exploited image pyramids [Denton et al 2015; Karras et al 2017]




Scale Structure in Generative Models

Gaussian pyramid

lmage pyramids have a long, successtul
history In computer vision

Problem: Overcomplete

To maintain invertibility and exact density,

need to preserve dimensionality Laplacian pyramid

Solution: \Wavelets




Wavelet Transform

Wavelet " ‘ Wavelet
Transform \ W ) Transform




Inverse Wavelet Transform

Inverse




\Wavelets

2s+1

Formally, I, Dy, D, D,, ...,D. = h(I) where I € R?" x R?™ x 3
- h(I) preserves dimensionality => (potentially) invertible

- h(l) is linear => differentiable and constant determinant

. h(I) is orthonormal (for some wavelets) => unit determinant

Can use a wavelet transform as a flow

In practice used the (Orthonormal) Haar \Wavelet



Wavelet Flow

Use change of variables to write

p(1) = p(h(1)) | det Dh(I) |
= p(Ip, Dy, Dy, ..., D))

Use product rule of probabillity to factorize

= p(Ly))p(Dy | 1))p(D; | Dy, 1y). ..

Apply inverse wavelet transform 1., | = _I(IO, Dy, Dy, ..., D)) to get

l

= py [ [ ;1)
1=0



Wavelet Flow

Training can be done with maximum log likelihood but now

log p(I) = log p(Iy) + ) log p(D;| 1)
1=0

The distributions p(1,)) and p(D. | 1.) can all be trained independently

In practice use a Glow-based NF architecture for p(1,) and p(D. | 1)



Generation with Wavelet Flow

Inverse Inverse

S ol \Wavelet

Transform




Quantitative evaluation

B RealNVP B Glow B Wavelet Flow

ImageNet 32

ImageNet 64

LSUN Bedroom

LSUN Tower

LSUN Church

CelebA-HQ

FFHQ
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Training time

LSUN (all)

CelebA-HQ 256

0 1750 3500 5250 7000

GPU Hours



Super-resolution (128x128 Image, 8x upsampled)
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Super-resolution (128x128 Image, 8x upsampled w/ Wavelet Flow)
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Super-resolution (Original 1024x1024 Image




Super-resolution Detail Comparison

Low resolution 128x128
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Upsampled with Wavelet Flow

Original 1024x1024+ ..
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Wavelet Flow tl:dr

Wavelet Flow:

- Each p(D. |I.) can be simpler and learned independently

- Training can be parallelized for efficient high resolution training (up to 15x faster)
- EBEvery model includes consistent lower resolution models

- Includes super-resolution for free

Limitations and Future Work: Jason J. Yu

- Perceptual quality is limited, even it quantitatively similar

»+ Running on other kinds of signals (3D data like MRI/CT/etc)

Konstantinos G.
Derpanis

Full detalls in Yu et al NeurlPS 2020




