
CVPR 2021 Tutorial:
Normalizing Flows and Invertible Neural Networks in Computer Vision

Normalizing Flows for Computer Vision: Wavelet Flow and Noise Flow

Marcus A. Brubaker

Flows and INNs in Computer Vision: CVPR 2021 Edition
• DeFlow: Learning Complex Image Degradations From Unpaired Data With Conditional Flows by Valentin Wolf,

Andreas Lugmayr, Martin Danelljan, Luc Van Gool, Radu Timofte

• ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows by Jie An, Siyu Huang, Yibing Song, Dejing
Dou, Wei Liu, Jiebo Luo

• iVPF: Numerical Invertible Volume Preserving Flow for Efficient Lossless Compression by Shifeng Zhang, Chen
Zhang, Ning Kang, Zhenguo Li.

• Generative Classifiers as a Basis for Trustworthy Image Classification by Radek Mackowiak, Lynton Ardizzone,
Ullrich Kothe, Carsten Rother

• Flow-Based Kernel Prior With Application to Blind Super-Resolution by Jingyun Liang, Kai Zhang, Shuhang Gu, Luc Van Gool, Radu Timofte

• Autoregressive Stylized Motion Synthesis With Generative Flow by Yu-Hui Wen, Zhipeng Yang, Hongbo Fu, Lin Gao, Yanan Sun, Yong-Jin Liu

• Mol2Image: Improved Conditional Flow Models for Molecule to Image Synthesis by Karren Yang, Samuel Goldman, Wengong Jin, Alex X. Lu, Regina Barzilay, Tommi Jaakkola,
Caroline Uhler

• Invertible Image Signal Processing by Yazhou Xing, Zian Qian, Qifeng Chen

• Invertible Denoising Network: A Light Solution for Real Noise Removal by Yang Liu, Zhenyue Qin, Saeed Anwar, Pan Ji, Dongwoo Kim, Sabrina Caldwell, Tom Gedeon

• Large-Capacity Image Steganography Based on Invertible Neural Networks by Shao-Ping Lu, Rong Wang, Tao Zhong, Paul L. Rosin

• Quality-Agnostic Image Recognition via Invertible Decoder by Insoo Kim, Seungju Han, Ji-won Baek, Seong-Jin Park, Jae-Joon Han, Jinwoo Shin

• Neural Parts: Learning Expressive 3D Shape Abstractions With Invertible Neural Networks by Despoina Paschalidou, Angelos Katharopoulos, Andreas Geiger, Sanja Fidler

Noise Flow:
Noise Modelling with Conditional Normalizing Flows

Abdelrahman
Abdelhamed

Michael S.
Brown

Camera Noise
Image + Noise

Camera: Pixel
ISO: 800

Exposure: 1/350 s

Camera Noise

Camera Noise

Camera Noise

𝜎2 = 𝛽1𝐈 + 𝛽2

Camera Noise

Dark Signal Non-Uniformity Fixed Pattern Noise
Thermal Noise

Amplification (Gain) Noise

Defective Pixels

Photo Response
Non-Uniformity

Clipping (over/
under-exposure)

Camera Noise

Idea: 
learn a convenient, compact model of camera noise

which exploits this knowledge using normalizing flows

Scene
radiance

Amplifier
(Gain)

Sensor
(photosites,

microlens, etc.)

Sensor
Read-out

Analog-to-
Digital

Conversion

Photon noise

Sensor
irradiance

Electronic noise (fixed pattern, dark
current, cross-talk, defective pixels, etc.) Gained noise Read-out

noise
Quantization

noise

Raw-RGB
image (digital)

Gained signal
and noise

Read-out
signal (analog)

N
oi
se

Si
gn
al

Noise Flow

Affine
coupling

layer

convolutional

layer

1 × 1

Flow step × 𝐾

Affine
coupling

layer

convolutional

layer

1 × 1

Flow step × 𝐾

g(z) = 𝛾(ISO, 𝑚) ⊙ z

Gain
layer

 (sensor ISO setting)
 (camera identifier)

ISO
𝑚

z

 g(z) = 𝐬 ⊙ z

𝐬 = (𝛽1𝐈 + 𝛽2)
1
2

: scaling factor for)

: scaling factor for camera

𝛾(ISO, 𝑚) = 𝜓𝑚 × 𝑢(ISO) × ISO

𝑢 ISO
𝜓𝑚 𝑚

Signal-
dependent

layer

(Raw clean image)

𝐈

Gaussian Noise

𝐧

Camera Noise

𝜎2 = 𝛽1𝐈 + 𝛽2

Smartphone Image Denoising Dataset (SIDD)

A High-Quality Denoising Dataset for Smartphone Cameras

Abdelrahman Abdelhamed
York University

kamel@eecs.yorku.ca

Stephen Lin
Microsoft Research

stevelin@microsoft.com

Michael S. Brown
York University

mbrown@eecs.yorku.ca

Abstract

The last decade has seen an astronomical shift from

imaging with DSLR and point-and-shoot cameras to imag-

ing with smartphone cameras. Due to the small aperture

and sensor size, smartphone images have notably more

noise than their DSLR counterparts. While denoising for

smartphone images is an active research area, the research

community currently lacks a denoising image dataset rep-

resentative of real noisy images from smartphone cameras

with high-quality ground truth. We address this issue in

this paper with the following contributions. We propose a

systematic procedure for estimating ground truth for noisy

images that can be used to benchmark denoising perfor-

mance for smartphone cameras. Using this procedure, we

have captured a dataset – the Smartphone Image Denoising
Dataset (SIDD) – of ~30,000 noisy images from 10 scenes

under different lighting conditions using five representative

smartphone cameras and generated their ground truth im-

ages. We used this dataset to benchmark a number of de-

noising algorithms. We show that CNN-based methods per-

form better when trained on our high-quality dataset than

when trained using alternative strategies, such as low-ISO

images used as a proxy for ground truth data.

1. Introduction

With over 1.5 billion smartphones sold annually,1 it is
unsurprising that smartphone images now vastly outnumber
images captured with DSLR and point-and-shoot cameras.
But while the prevalence of smartphones makes them a con-
venient device for photography, their images are typically
degraded by higher levels of noise due to the smaller sen-
sors and lenses found in their cameras. This problem has
heightened the need for progress in image denoising, par-
ticularly in the context of smartphone imagery.

A major issue towards this end is the lack of an estab-
lished benchmarking dataset for real image denoising rep-
resentative of smartphone cameras. The creation of such a

1Source: Gartner Reports, 2017

𝛽𝛽1 = 2.98 × 10−3
𝛽𝛽2 = 4 × 10−5
𝜎𝜎 = 5.05

(a) Noisy image (ISO 800)

𝛽𝛽1 = 4.01 × 10−4
𝛽𝛽2 = 3 × 10−6
𝜎𝜎 = 1.71

(b) Low-ISO image (ISO 100)

𝛽𝛽1 = 6.9 × 10−5
𝛽𝛽2 = 1 × 10−6
𝜎𝜎 = 0.84

(c) Ground truth using [25]

𝛽𝛽1 = 𝟑𝟑.𝟗𝟗 × 𝟏𝟏𝟏𝟏−𝟓𝟓
𝛽𝛽2 = 𝟏𝟏 × 𝟏𝟏𝟏𝟏−𝟕𝟕
𝜎𝜎 = 𝟏𝟏.𝟔𝟔𝟑𝟑

(d) Our ground truth

Figure 1: An example scene imaged with an LG G4 smart-
phone camera: (a) a high-ISO noisy image; (b) same scene
captured with low ISO – this type of image is often used as
ground truth for (a); (c) ground truth estimated by [25]; (d)
our ground truth. Noise estimates (�1 and �2 for noise level
function and � for Gaussian noise – see Section 3.2) indi-
cate that our ground truth has significantly less noise than
both (b) and (c). Images shown are processed in raw-RGB,
while sRGB images are shown here to aid visualization.

dataset is essential both to focus attention on denoising of
smartphone images and to enable standardized evaluations
of denoising techniques. However, many of the approaches
used to produce noise-free ground truth images are not fully
sufficient, especially for the case of smartphone cameras.
For example, the common strategy of using low ISO and
long exposure to acquire a “noise free” image [2, 26] is not
applicable to smartphone cameras, as noise is still signifi-
cant on such images even with the best camera settings (e.g.,
see Figure 1). Recent work in [25] moved in the right direc-
tion by globally aligning and post-processing low-ISO im-
ages to match their high-ISO counterparts. This approach
gives excellent performance on DSLR cameras; however,
it is not entirely applicable to smartphone images. In par-
ticular, post-processing of a low-ISO image does not suf-
ficiently remove the remaining noise, and the reliance on
a global translational alignment has proven inadequate for
aligning smartphone images.

1

CVPR 2018

Results on SIDD

Gaussian Camera
NLF NoiseFlow

NLL -2.831 -3.105 -3.521

Marginal
KL 0.394 0.052 0.008

Model Evaluation

Gaussian Camera NLF Noise Flow Real Noise Clean

Results on SIDD

PSNR (dB) SSIM

Gaussian 43.63 0.968

Camera NLF 44.99 0.982

NoiseFlow 48.52 0.992

Real 47.08 0.989

Denoising with DnCNN

Noise Flow tl;dr

Noise Flow is a realistic and practical model of camera noise in real images

• Domain knowledge to guide construction of model to capture signal dependence, ISO gain and camera
specific characteristics

• NFs to learn other aspects which are unknown or difficult to model

Future Directions

• Noise modelling for other sensors and imaging domains

• Other aspects of camera noise (fixed pattern noise, camera specific behaviour, etc)

• Realistic camera noise in other applications

Full details in Abdelhamed et al ICCV 2019

Abdelrahman
Abdelhamed

Michael S.
Brown

Wavelet Flow:
Fast Training of High Resolution Normalizing Flows

Jason J. Yu

Konstantinos G.
Derpanis

Scale Structure in Generative Models

Existing NF architectures lack explicit notion of signal scale

• Models trained at different resolutions are inconsistent

• Training is expensive

GANs and VAEs have exploited image pyramids [Denton et al 2015; Karras et al 2017]

Gauthier [9] both explore this model with experiments on MNIST and faces, using l as a class
indicator. In our approach, l will be another image, generated from another CGAN model.

2.2 Laplacian Pyramid

The Laplacian pyramid [1] is a linear invertible image representation consisting of a set of band-pass
images, spaced an octave apart, plus a low-frequency residual. Formally, let d(.) be a downsampling
operation which blurs and decimates a j⇥ j image I , so that d(I) is a new image of size j/2⇥ j/2.
Also, let u(.) be an upsampling operator which smooths and expands I to be twice the size, so u(I)
is a new image of size 2j ⇥ 2j. We first build a Gaussian pyramid G(I) = [I0, I1, . . . , IK], where
I0 = I and Ik is k repeated applications⇤ of d(.) to I . K is the number of levels in the pyramid,
selected so that the final level has very small spatial extent (8⇥ 8 pixels).

The coefficients hk at each level k of the Laplacian pyramid L(I) are constructed by taking the
difference between adjacent levels in the Gaussian pyramid, upsampling the smaller one with u(.)
so that the sizes are compatible:

hk = Lk(I) = Gk(I)� u(Gk+1(I)) = Ik � u(Ik+1) (3)
Intuitively, each level captures image structure present at a particular scale. The final level of the
Laplacian pyramid hK is not a difference image, but a low-frequency residual equal to the final
Gaussian pyramid level, i.e. hK = IK . Reconstruction from a Laplacian pyramid coefficients
[h1, . . . , hK] is performed using the backward recurrence:

Ik = u(Ik+1) + hk (4)
which is started with IK = hK and the reconstructed image being I = Io. In other words, starting
at the coarsest level, we repeatedly upsample and add the difference image h at the next finer level
until we get back to the full resolution image.

2.3 Laplacian Generative Adversarial Networks (LAPGAN)

Our proposed approach combines the conditional GAN model with a Laplacian pyramid represen-
tation. The model is best explained by first considering the sampling procedure. Following training
(explained below), we have a set of generative convnet models {G0, . . . , GK}, each of which cap-
tures the distribution of coefficients hk for natural images at a different level of the Laplacian pyra-
mid. Sampling an image is akin to the reconstruction procedure in Eqn. 4, except that the generative
models are used to produce the hk’s:

Ĩk = u(Ĩk+1) + h̃k = u(Ĩk+1) +Gk(zk, u(Ĩk+1)) (5)

The recurrence starts by setting ĨK+1 = 0 and using the model at the final level GK to generate a
residual image ĨK using noise vector zK : ĨK = GK(zK). Note that models at all levels except the
final are conditional generative models that take an upsampled version of the current image Ĩk+1 as
a conditioning variable, in addition to the noise vector zk. Fig. 1 shows this procedure in action for
a pyramid with K = 3 using 4 generative models to sample a 64⇥ 64 image.

The generative models {G0, . . . , GK} are trained using the CGAN approach at each level of the
pyramid. Specifically, we construct a Laplacian pyramid from each training image I . At each level

⇤i.e. I2 = d(d(I)).

G2

~ I3

G3

z2

~ h2

z3

G1

z1
G0

z0

~ I2 l2

~ I0

h0
~

I1
~

~ h1

l1

l0

Figure 1: The sampling procedure for our LAPGAN model. We start with a noise sample z3 (right side) and
use a generative model G3 to generate Ĩ3. This is upsampled (green arrow) and then used as the conditioning
variable (orange arrow) l2 for the generative model at the next level, G2. Together with another noise sample
z2, G2 generates a difference image h̃2 which is added to l2 to create Ĩ2. This process repeats across two
subsequent levels to yield a final full resolution sample I0.

3

Scale Structure in Generative Models

Image pyramids have a long, successful
history in computer vision

• Problem: Overcomplete

To maintain invertibility and exact density,
need to preserve dimensionality

• Solution: Wavelets

Laplacian pyramid

Gaussian pyramid

Wavelet Transform

Wavelet

Transform

Detail
Coefficients

n × n × 3

n
2

×
n
2

× 9

n
2

×
n
2

× 3

Wavelet

Transform

Detail
Coefficients

n
4

×
n
4

× 9

n
4

×
n
4

× 3

Inverse Wavelet Transform

Inverse

Wavelet

Transform

Detail
Coefficients

Inverse

Wavelet

Transform

Detail
Coefficients

Wavelets

Formally, where

• preserves dimensionality => (potentially) invertible

• is linear => differentiable and constant determinant

• is orthonormal (for some wavelets) => unit determinant

Can use a wavelet transform as a flow

• In practice used the (Orthonormal) Haar Wavelet

I0, D0, D1, D2, …, Ds = h(I) I ∈ ℝ2s+1 × ℝ2s+1 × 3

h(I)

h(I)

h(I)

Wavelet Flow

Use change of variables to write

Use product rule of probability to factorize

Apply inverse wavelet transform to get

p(I) = p(h(I)) | det Dh(I) |
= p(I0, D0, D1, …, Ds)

= p(I0)p(D0 |I0)p(D1 |D0, I0)…

Ii+1 = h−1(I0, D0, D1, …, Di)

= p(I0)
s

∏
i=0

p(Di |Ii)

Wavelet Flow

Training can be done with maximum log likelihood but now

The distributions and can all be trained independently

In practice use a Glow-based NF architecture for and

log p(I) = log p(I0) +
s

∑
i=0

log p(Di |Ii)

p(I0) p(Di |Ii)

p(I0) p(Di |Ii)

Generation with Wavelet Flow

Inverse

Wavelet

Transform

Detail
Coefficients

Inverse

Wavelet

Transform

Detail
Coefficients

p(I0)

p(D0 |I0)p(D1 |I1)

Quantitative evaluation

ImageNet 32

ImageNet 64

LSUN Bedroom

LSUN Tower

LSUN Church

CelebA-HQ

FFHQ

Average BPD (Lower is better)
0 1.25 2.5 3.75 5

RealNVP Glow Wavelet Flow

46

Training time

LSUN (all)

CelebA-HQ 256

GPU Hours
0 1750 3500 5250 7000

Glow Ours

44

Super-resolution (128x128 Image, 8x upsampled)

55

Super-resolution (128x128 Image, 8x upsampled w/ Wavelet Flow)

56

Super-resolution (Original 1024x1024 Image)

57

Super-resolution Detail Comparison

Original 1024x1024

Upsampled with Wavelet Flow

Low resolution 128x128

58

Wavelet Flow tl;dr

Wavelet Flow:

• Each can be simpler and learned independently

• Training can be parallelized for efficient high resolution training (up to 15x faster)

• Every model includes consistent lower resolution models

• Includes super-resolution for free

Limitations and Future Work:

• Perceptual quality is limited, even if quantitatively similar

• Running on other kinds of signals (3D data like MRI/CT/etc)

Full details in Yu et al NeurIPS 2020

p(Di |Ii)

Jason J. Yu

Konstantinos G.
Derpanis

