# CVPR 2021 Tutorial: Normalizing Flows and Invertible Neural Networks in Computer Vision

Marcus A. Brubaker and Ullrich Köthe





ן

# CVPR 2021 Tutorial: Normalizing Flows and Invertible Neural Networks in Computer Vision

Introduction to Normalizing Flows

Marcus A. Brubaker







#### Generative Models

density  $p_{\mathbf{X}}(\mathbf{X})$  parameterized by  $\theta$ 

Given a GM we may want to generate samples, evaluate new data points, etc.

Different distributions and different learning objectives and approaches lead to different GMs, e.g., GANs, VAEs, NFs etc

A generative model is a probability distribution over a random variable X which we attempt to learn from a set of observed data  $\{\mathbf{x}_i\}_{i=1}^N$  with some probability

# GMs: Mixture Models

### (Gaussian) Mixture Model

- a classical example of a GM which has been studied extensively
- trained either via ML or a variational bound on likelihood
- sampling and evaluating  $p_{\mathbf{X}}(\mathbf{X})$  is straightforward
- performance scales poorly with dimensionality and added expressiveness







[Richardson and Weiss, NeurIPS 2018]



# GMs: Energy-based Models

#### **Energy-Based Models**

- $p_{\mathbf{X}}(\mathbf{x})$  is unnormalized
- familiar in classical computer vision
- some recent successes
- training and sampling from  $p_{\mathbf{X}}(\mathbf{x})$  is complex, typically requiring MCMC



[Blake, Kohli and Rother eds, 2011]



[Song and Kingma, 2021]

### GMs: Generative Adversarial Networks

#### **Generative Adversarial Networks**

- impressive results
- trained through an adversarial process which (roughly) minimizes a divergence or integral probability metric
- sampling from  $p_{\mathbf{X}}(\mathbf{X})$  is straightforward •
- evaluating  $p_{\mathbf{X}}(\mathbf{X})$  is generally not possible •



[Karras et al, StyleGAN2 2019]

#### **Generative Adversarial Nets**

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair<sup>†</sup>, Aaron Courville, Yoshua Bengio<sup>‡</sup>

Département d'informatique et de recherche opérationnelle

Université de Montréal Montréal, QC H3C 3J7



### **GMs: Variational Autoencoders**

#### **Variational Auto-encoders**

- probabilistic latent variables models
- successful in learning useful low-dimensional representations
- trained with bound on marginal likelihood
- sampling from  $p_{\mathbf{X}}(\mathbf{X})$  is straightforward
- approximate evaluation of  $p_{\mathbf{X}}(\mathbf{X})$  is possible



<sup>[</sup>Kingma and Welling, 2019]



# What are Normalizing Flows?

Normalizing Flows are a GM built on invertible transformations

They are generally:

- Efficient to sample from  $p_{\mathbf{X}}(\mathbf{x})$
- Efficient to evaluate  $p_{\mathbf{X}}(\mathbf{x})$
- Highly expressive
- Useful latent representation
- Straightforward to train

#### A family of non-parametric density estimation algorithms

E. G. TABAK Courant Institute of Mathematical Sciences

AND

CRISTINA V. TURNER FaMAF, Universidad Nacional de Córdoba

[Tabak and Turner, CPAM 2013]

ESTIMATION

Université de Montréal Montréal, QC H3C 3J7

2010 High-Dimensional Probability Estimation with Deep Density Models

> Oren Rippel<sup>\*</sup> Massachusetts Institute of Technology, Harvard University rippel@math.mit.edu

[Rippel and Adams, arXiv 2013]

2013



[Rezende and Mohamed, ICML 2015]

#### DENSITY ESTIMATION USING REAL NVP

Laurent Dinh\* Montreal Institute for Learning Algorithms University of Montreal Montreal, QC H3T1J4

**Jascha Sohl-Dickstein** Google Brain **Samy Bengio** Google Brain

[Dinh et al, ICLR 2017]









#### **Glow: Generative Flow** with Invertible 1×1 Convolutions

[Kingma and Dhariwal, NeurIPS 2018]



#### **Diederik P. Kingma<sup>\*</sup>, Prafulla Dhariwal<sup>\*</sup>**

OpenAI, San Francisco



#### [Kingma and Dhariwal, NeurIPS 2018]





#### [Kingma and Dhariwal, NeurIPS 2018]



#### Change of variables

where  $\mathbf{Z} = f(\mathbf{X})$  is an invertible, differentiable function and  $Df(\mathbf{x})$  is the Jacobian of  $f(\mathbf{x})$ 

 $p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}$ 



# Can represent a given $p_{\mathbf{X}}(\mathbf{x})$ in terms of $p_{\mathbf{Z}}(\mathbf{z})$ and $f(\mathbf{x})$

TO BE THE AREA AND A CONTRACTOR OF THE AREA AND A CONTRACTOR





# $p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f(\mathbf{x})) \left| \det Df(\mathbf{x}) \right|$



LART ALLART SHOLD BATATION FOR MILLART SHOLD BATTING





Learn  $f(\mathbf{x})$  to transform data distribution  $p_{\mathbf{x}}(\mathbf{x})$  into  $p_{\mathbf{z}}(\mathbf{z})$ 

Two pieces

**Base Measure:**  $p_{\mathbf{Z}}(\mathbf{z})$  - Typically selected as  $\mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$ •

• Flow:  $f(\mathbf{x})$  - Must be invertible and differentiable

Density evaluation:

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f(\mathbf{x})) |\det \mathbf{x}|$$

Sampling:

- Sample  $\mathbf{z} \sim p_{\mathbf{Z}}(\cdot)$
- Compute  $\mathbf{x} = f^{-1}(\mathbf{z})$



Training can be done with maximum (log-)likelihood

$$\max_{\theta} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\mathbf{x}_{i}$$

where  $\theta$  are the parameters of the flow  $f(\mathbf{x} \mid \theta)$ 

# $|\theta\rangle$ ) + log $|\det Df(\mathbf{x}_i | \theta)|$

#### Flows

A **flow** is a parametric function  $f(\mathbf{x})$  which:

- is invertible
- is differentiable

Also sometimes called a **flow layer**, **bijection**, etc.

Designing and understanding flows is the core technical challenge with NFs

#### • has an efficiently computable inverse and Jacobian determinant $|\det Df(\mathbf{x})|$

### Composition of Flows

#### Invertible, differentiable functions are closed under composition

$$f = f_K \circ f_{K-1} \circ \cdots \circ f_2 \circ f_1$$

Build up a complex flow from composition of simpler flows

#### Composition of Flows



 $f^{-1} = f_1^{-1} \circ f_2^{-1} \circ f_3^{-1} \circ f_4^{-1}$ 



### Composition of Flows

#### Determinant:

Likelihood:

 $\max_{\theta} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\mathbf{x}_{i} | \theta)) + \sum_{k=1}^{N} \log |\det Df_{k}(\mathbf{x}_{i} | \theta)|$ 

 $\det Df = \det \prod_{k=1}^{K} Df_{k} = \prod_{k=1}^{K} \det Df_{k}$ k=1 k=1

### Linear Flows

A linear transformation can be a flow if the matrix is invertible

Inverse: 
$$f^{-1}(z) = A^{-1}(z - b)$$

Determinant:  $\det Df(\mathbf{x}) = \det \mathbf{A}$ 

Problem:

- Inexpressive (linear functions are closed under composition) •
- Determinant/inverse could be  $O(d^3)$

#### $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$

### Linear Flows

#### Restricting the form of the matrix can reduce the determinant/inverse costs

|                                                                    | Inverse          | Determinant |
|--------------------------------------------------------------------|------------------|-------------|
| Full                                                               | $O(d^3)$         | $O(d^3)$    |
| Diagonal                                                           | O(d)             | O(d)        |
| Triangular                                                         | $O(d^2)$         | O(d)        |
| Block Diagonal                                                     | $O(c^3d)$        | $O(c^3d)$   |
| LU Factorized<br>[Kingma and Dhariwal 2018]                        | $O(d^2)$         | O(d)        |
| Spatial Convolution<br>[Hoogeboom et al 2019; Karami et al., 2019] | $O(d \log d)$    | O(d)        |
| 1x1 Convolution<br>[Kingma and Dhariwal 2018]                      | $O(c^3 + c^2 d)$ | $O(c^3)$    |

## Coupling Flows



[Figure adapted from Jason Yu]





#### Coupling Flows: Inverse



#### [Figure adapted from Jason Yu]



# Coupling Flows

#### Jacobian:

#### Determinant:

 $Df(\mathbf{x}) = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \frac{\partial}{\partial \mathbf{x}^{A}} \hat{f}(\mathbf{x}^{B} | \theta(\mathbf{x}^{A})) & D\hat{f}(\mathbf{x}^{B} | \theta(\mathbf{x}^{A})) \end{bmatrix}$ 

# $\det Df(\mathbf{x}) = \det D\hat{f}(\mathbf{x}^B | \theta(\mathbf{x}^A))$

[Dinh et al 2014 & Dinh et al 2016]



# Coupling Flows

### Can make $\theta(\mathbf{x}^A)$ arbitrarily complex, e.g., MLP, CNN, etc

Important to change the splits to ensure full expressiveness, but how?

[Dinh et al 2014 & Dinh et al 2016]





[Figure adapted from Jason Yu]

# Coupling Flows

#### Coupling Transforms

Additive [NICE, Dinh et al 2014]

Affine [RealNVP, Dinh et al 2016]

[Spline Flow, Durkan et al, 2019], etc...

# $\hat{f}(\mathbf{x} \mid \mathbf{t}) = \mathbf{x} + \mathbf{t}$

### $\hat{f}(\mathbf{x} | \mathbf{s}, \mathbf{t}) = \mathbf{s} \odot \mathbf{x} + \mathbf{t}$

MLPs [NAF, Huang et al, 2018], MixLogCDF [Flow++, Ho et al, 2019], Splines

### Affine Coupling Flows



[Figure adapted from Jason Yu]





### **Recursive Coupling Flows: HINT**





[Kruse & Detommaso et al. "HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference". AAAI 2021.]



### Recursive Coupling Flows: HINT



[Kruse & Detommaso et al. "HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference". AAAI 2021.]



# Recursive Coupling Flows: HINT





[Kruse & Detommaso et al. "HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference". AAAI 2021.]





Autoregressive models are a form of normalizing flow

# $p(\mathbf{x}) = \prod_{i=1}^{\infty} p(x_i | \mathbf{x}_{< i})$ i=1

#### Gaussian marginals

 $p(x_i | \mathbf{x}_{< i}) = \mathcal{N}\left(x_i | \mu(\mathbf{x}_{< i}), \sigma^2(\mathbf{x}_{< i})\right)$ 

Reparameterization trick:

#### $x_i = \mu(\mathbf{x}_{< i}) + \sigma(\mathbf{x}_{< i})z_i$ where $z_i \sim \mathcal{N}(0, 1)$

[Kingma et al NeurIPS 2016; Papamakarios et al NeurIPS 2017]



#### (Affine) Autoregressive Flow:

 $f_{i}^{-1}(\mathbf{Z}) = \mu(f_{<i}^{-1}(\mathbf{Z}_{<i})) + \sigma(f_{<i}^{-1}(\mathbf{Z}_{<i}))z_{i}$ 



Determinant:

 $f_i(\mathbf{x}) = \frac{x_i - \mu(\mathbf{x}_{< i})}{\sigma(\mathbf{x}_{< i})}$ 

 $\det Df(\mathbf{x}) = [\sigma^{-1}(\mathbf{x}_{< i})]$ 

[Kingma et al NeurIPS 2016; Papamakarios et al NeurIPS 2017]



Sampling is sequential and slow

Density evaluation, ie, computing  $f(\mathbf{x})$ , can be done in parallel

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

[Kingma et al NeurIPS 2016]



#### (Affine) Inverse Autoregressive Flow:



Determinant:

 $f_i(\mathbf{x}) = \mu(f_{< i}(\mathbf{x}_{< i})) + \sigma(f_{< i}(\mathbf{x}_{< i}))x_i$  $f_i^{-1}(\mathbf{Z}) = \frac{z_i - \mu(\mathbf{Z}_{< i})}{\sigma(\mathbf{Z}_{< i})}$ 

 $\det Df(\mathbf{x}) = \int \sigma(f_{\langle i}(\mathbf{x}_{\langle i}))$ 

[Kingma et al NeurIPS 2016; Papamakarios et al NeurIPS 2017]



A flow preserves dimensionality, but this is expensive in high dimensions

Just stop using subsets of dimensions

Practically, acts like dropping dimensions

[Dinh et al 2016]





[Dinh et al 2016]

Multi-scale flows are just a special coupling flow

• Important: must track "dropped" dimensions to preserve invertibility

 $f(\mathbf{x}) = (\mathbf{x}^A, \hat{f}(\mathbf{x}^B | \theta))$ 

#### How do we split the dimensions for images?



#### "Squeeze" the spatial arrangement to get more channels

#### $n \times n \times c$

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |



## Discrete-time Normalizing Flows





### Continuous-time Normalizing Flows



ODEs as a flow

$$f(\mathbf{x}) = \mathbf{y}_0 + \int_0^1 h(t, \mathbf{y}_t) dt \text{ with } \mathbf{y}_0$$

Inverse:

$$f^{-1}(\mathbf{z}) = \mathbf{y}_1 + \int_1^0 h(t, \mathbf{y}_t) dt \text{ with } \mathbf{y}_t$$





#### Continuous change of variable

 $\log p_{\mathbf{X}}(\mathbf{x}) = \log p_{\mathbf{Z}}(f(\mathbf{x}))$ 

$$(\mathbf{x})) + \int_0^1 Tr\left(\frac{\partial h}{\partial \mathbf{y}}(t, \mathbf{y}_t)\right) dt$$



#### Hutchinson Trace Estimator

$$\int_{0}^{1} Tr\left(\frac{\partial h}{\partial \mathbf{y}}(t, \mathbf{y}_{t})\right) dt =$$

 $\mathbb{E}_{\epsilon \sim p(\epsilon)} \left| \int_{0}^{1} \epsilon^{T} \frac{\partial h}{\partial \mathbf{y}}(t, \mathbf{y}_{t}) \epsilon dt \right|$ 



#### Target



#### Samples



#### Density



# **Vector Field**



#### Target



#### Samples





#### Density



#### Vector Field



#### Target



#### Samples



#### Density









# Training PGMs with Maximum Likelihood

Normalizing Flows are a model of continuous data

Pixel intensities are typically discrete or quantized



# Training PGMs with Maximum Likelihood

ML learning of continuous models w/ discrete data can cause singularities

Really want to optimize



Probability Density of Continuous Values  $\mathcal{D}_{\mathbf{V}}(\mathbf{V} + \mathbf{U}\mathcal{D}_{\mathbf{U}}(\mathbf{U})\mathcal{U})$ 

> Probability Density of Quantization Noise

#### Uniform Dequantization

During training, **dequantize** the data (i.e., add noise)

$$P_{\mathbf{Y}}(\mathbf{y}) = \int_{[0,1]^{D}} p_{\mathbf{X}}(\mathbf{y} + \mathbf{u})p$$
$$\approx \frac{1}{K} \sum_{k=1}^{K} p_{\mathbf{X}}(\mathbf{y} + \mathbf{u}_{k})$$

Simplest choice of  $p_{\mathbf{U}}$  is uniform



#### Variational Dequantization

View  $p_{\mathbf{U}}$  as a variational distribution and learn it

$$\log P_{\mathbf{Y}}(\mathbf{y}) \ge \int_{[0,1]^{D}} \log \frac{p_{\mathbf{X}}(\mathbf{y} + \mathbf{u})}{p_{\mathbf{U}}(\mathbf{u} | \mathbf{y})} d\mathbf{x}$$
$$\approx \frac{1}{K} \sum_{k=1}^{K} \log \frac{p_{\mathbf{X}}(\mathbf{y} + \mathbf{u}_{k})}{p_{\mathbf{U}}(\mathbf{u}_{k} | \mathbf{y})}$$



[Ho et al, 2019]



# Common Flow Architectures for Images

|                                     | Transformations                              | Dequantization | Multi-Scale |
|-------------------------------------|----------------------------------------------|----------------|-------------|
| NICE [Dinh et al, 2014]             | Additive Coupling +<br>Diagonal Linear       | Uniform        | No          |
| RealNVP [Dinh et al, 2016]          | Affine Coupling +<br>Channelwise Permutation | Uniform        | Yes         |
| Glow [Kingma and<br>Dhariwal, 2018] | Affine Coupling +<br>Channelwise Linear      | Uniform        | Yes         |
| Flow++ [Ho et al, 2019]             | MixLogCDF Coupling +<br>Channelwise Linear   | Variational    | Yes         |



#### Conclusions

#### References

Dequantization

- 2175-2183).
- Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.
- Hoogeboom, E., Cohen, T. S., & Tomczak, J. M. (2020). Learning Discrete Distributions by Dequantization. arXiv preprint arXiv:2001.11235.

Architectures

- Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516.
- Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
- In International Conference on Machine Learning (pp. 2722-2730).

**Review Articles** 

- arXiv:1912.02762.

• Uria, B., Murray, I., & Larochelle, H. (2013). RNADE: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems (pp.

• Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Advances in neural information processing systems (pp. 10215-10224).

• Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design.

• Kobyzev, I., Prince, S., & Brubaker, M. (2020). Normalizing flows: An introduction and review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence. • Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2019). Normalizing flows for probabilistic modeling and inference. arXiv preprint