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Generative Models

A generative model is a probability distribution over a random variable  which 
we attempt to learn from a set of observed data  with some probability 
density  parameterized by 


Given a GM we may want to generate samples, evaluate new data points, etc


Different distributions and different learning objectives and approaches lead to 
different GMs, e.g., GANs, VAEs, NFs etc

X
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GMs: Mixture Models

(Gaussian) Mixture Model  

• a classical example of a GM which has been 
studied extensively


• trained either via ML or a variational bound on 
likelihood


• sampling and evaluating  is straightforward


• performance scales poorly with dimensionality 
and added expressiveness

pX(x)
Figure 4: Random samples generated by our MFA model trained on CelebA, MNIST and SVHN

Figure 5: Examples for mode-collapse in BEGAN trained on CelebA, showing three over-allocated
bins and three under-allocated ones. The first image in each bin is the cell centroid (marked in red).

Table 1: Bin-proportions NDB/K
scores for different models trained
on CelebA, using 20,000 samples
from each model or set, for differ-
ent number of bins (K). The listed
values are NDB – numbers of sta-
tistically different bins, with signif-
icance level of 0.05, divided by the
number of bins K (lower is better).

MODEL K=100 K=200 K=300

TRAIN 0.01 0.03 0.03
TEST 0.12 0.07 0.08

MFA 0.21 0.12 0.16

MFA+pix2pix 0.34 0.34 0.33
ADVERSARIAL MFA 0.33 0.30 0.22

VAE 0.78 0.73 0.72
VAE-DFC 0.77 0.65 0.62

DCGAN 0.68 0.69 0.65
BEGAN 0.94 0.85 0.82
WGAN 0.76 0.66 0.62
WGAN-GP 0.42 0.32 0.27

Table 2: NDB/K scores for MNIST

MODEL K=100 K=200 K=300

TRAIN 0.06 0.04 0.05

MFA 0.14 0.13 0.14

DCGAN 0.41 0.38 0.46
WGAN 0.16 0.20 0.21

Table 3: NDB/K scores for SVHN

MODEL K=100 K=200 K=300

TRAIN 0.03 0.03 0.03

MFA 0.32 0.23 0.24

DCGAN 0.78 0.74 0.76
WGAN 0.87 0.83 0.82
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GMs: Energy-based Models

Energy-Based Models 

•  is unnormalized 


• familiar in classical computer vision


• some recent successes


• training and sampling from  is 
complex, typically requiring MCMC

pX(x)

pX(x)

Figure 1: Samples from a score-based generative model trained with multiple scales of noise
perturbations (resolution 1024⇥ 1024). Image credit to Song et al. (2021).

an important negative impact on sample generation. As an example, suppose pdata(x) =
⇡p0(x) + (1� ⇡)p1(x). Let S0 := {x | p0(x) > 0} and S1 := {x | p1(x) > 0} be the supports
of p0(x) and p1(x) respectively. When they are disjoint from each other, the score of pdata(x)
is given by

rx log pdata(x) =

(
rx log p0(x), x 2 S0

rx log p1(x), x 2 S1,

which does not depend on the weight ⇡. Since Score Matching trains an EBM by matching its
score to the score of data, rx log pdata(x), which contains no information of ⇡ in this case, it
is impossible for the learned EBM to recover the correct weight of p0(x) or p1(x). In practice,
the regularity conditions of Score Matching actually require pdata(x) > 0 everywhere, so S0

and S1 cannot be completely disjoint from each other, but when they are close to being
mutually disjoint (which often happens in real data especially in high-dimensional space), it
will be very hard to learn the weights accurately with Score Matching. When the weights are
not accurate, samples will concentrate around different data modes with an inappropriate
portion, leading to worse sample quality.

Song and Ermon (2019, 2020) and Song et al. (2021) overcome this difficulty by perturbing
training data with different scales of noise, and learn a score model for each scale. For a large
noise perturbation, different modes are connected due to added noise, and estimated weights
between them are therefore accurate. For a small noise perturbation, different modes are
more disconnected, but the noise-perturbed distribution is closer to the original unperturbed
data distribution. Using a sampling method such as annealed Langevin dynamics (Song and
Ermon, 2019, 2020; Song et al., 2021) or leveraging reverse diffusion processes (Sohl-Dickstein

10

[Song and Kingma, 2021]

Published as a conference paper at ICLR 2020

C FURTHER HYBRID MODEL SAMPLES

Additional samples from CIFAR10 and SVHN can be seen in Figure 7 and samples from CIFAR100
can be seen in Figure 8

Figure 7: Class-conditional Samples. Left to right: CIFAR10, SVHN.

Figure 8: CIFAR100 Class-conditional Samples.

15

[Grathwohl et al, ICLR 2020]

[Blake, Kohli and Rother eds, 2011]



GMs: Generative Adversarial Networks

Generative Adversarial Networks


• impressive results


• trained through an adversarial process 
which (roughly) minimizes a divergence or 
integral probability metric


• sampling from  is straightforward


• evaluating  is generally not possible

pX(x)

pX(x)
Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie
⇤
, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair
†
, Aaron Courville, Yoshua Bengio

‡

Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

Abstract

We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to 1

2 everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging
the benefits of piecewise linear units in the generative context. We propose a new generative model
estimation procedure that sidesteps these difficulties. 1

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a
discriminative model that learns to determine whether a sample is from the model distribution or the
data distribution. The generative model can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game drives
both teams to improve their methods until the counterfeits are indistiguishable from the genuine
articles.

⇤Jean Pouget-Abadie is visiting Université de Montréal from Ecole Polytechnique.
†Sherjil Ozair is visiting Université de Montréal from Indian Institute of Technology Delhi
‡Yoshua Bengio is a CIFAR Senior Fellow.
1All code and hyperparameters available at http://www.github.com/goodfeli/adversarial
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[Karras et al, StyleGAN2 2019]



GMs: Variational Autoencoders

Variational Auto-encoders


• probabilistic latent variables models


• successful in learning useful low-dimensional 
representations


• trained with bound on marginal likelihood


• sampling from  is straightforward


• approximate evaluation of  is possible

pX(x)

pX(x)

2.2. Evidence Lower Bound (ELBO) 17

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 2.1: A VAE learns stochastic mappings between an observed x-space, whose

empirical distribution qD(x) is typically complicated, and a latent z-space, whose

distribution can be relatively simple (such as spherical, as in this figure). The

generative model learns a joint distribution p◊(x, z) that is often (but not always)

factorized as p◊(x, z) = p◊(z)p◊(x|z), with a prior distribution over latent space

p◊(z), and a stochastic decoder p◊(x|z). The stochastic encoder q„(z|x), also called

inference model, approximates the true but intractable posterior p◊(z|x) of the

generative model.

[Kingma and Welling, 2019]



What are Normalizing Flows?

Normalizing Flows are a GM built on invertible transformations


They are generally:


• Efficient to sample from 


• Efficient to evaluate 


• Highly expressive


• Useful latent representation


• Straightforward to train

pX(x)

pX(x)



History of Normalizing Flows

A family of non-parametric density estimation algorithms

E. G. TABAK
Courant Institute of Mathematical Sciences

AND
CRISTINA V. TURNER

FaMAF, Universidad Nacional de Córdoba

Abstract

A new methodology for density estimation is proposed. The methodology, which
builds on the one developed in [17], normalizes the data points through the com-
position of simple maps. The parameters of each map are determined through
the maximization of a local quadratic approximation to the log-likelihood. Var-
ious candidates for the elementary maps of each step are proposed; criteria for
choosing one includes robustness, computational simplicity and good behavior in
high-dimensional settings. A good choice is that of localized radial expansions,
which depend on a single parameter: all the complexity of arbitrary, possibly
convoluted probability densities can be built through the composition of such
simple maps. c� 2000 Wiley Periodicals, Inc.

1 Introduction

A central problem in the analysis of data is density estimation: given a set
of independent observations x j, j = 1, . . . ,m, estimate its underlying probability
distribution. This article is concerned with the case in which x is a continuous,
possibly multidimensional variable, typically in R

n, and its distribution is specified
by a probability density r(x). Among the many uses of density estimation are its
application to classification, clustering and dimensional reduction, as well as more
field-specific applications such as medical diagnosis, option pricing and weather
prediction [2, 7, 14].

Parametric density estimation is often based on maximal likelihood: a family
of candidate densities is proposed, r(x;b ), where b denotes parameters from an
admissible set A. Then these parameters are chosen so as to maximize the log-
likelihood L of the available observations:

(1.1) b = argmax
b2A

L =
m

Â
j=1

log(r(x j;b )) .

A typical example is a family r(x;b ) of Gaussian mixtures, with b including free
parameters in the means and covariance matrices of the individual Gaussians and
their weights in the mixture. Parametric density estimation is a practical tool of

Communications on Pure and Applied Mathematics, Vol. 000, 0001–0020 (2000)
c� 2000 Wiley Periodicals, Inc.

[Tabak and Turner, CPAM 2013]
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High-Dimensional Probability Estimation with Deep Density

Models

Oren Rippel∗ Ryan Prescott Adams†

Massachusetts Institute of Technology, Harvard University
Harvard University

rippel@math.mit.edu rpa@seas.harvard.edu

Abstract

One of the fundamental problems in machine learning is the estimation of a probability distribution
from data. Many techniques have been proposed to study the structure of data, most often building
around the assumption that observations lie on a lower-dimensional manifold of high probability. It
has been more difficult, however, to exploit this insight to build explicit, tractable density models for
high-dimensional data. In this paper, we introduce the deep density model (DDM), a new approach
to density estimation. We exploit insights from deep learning to construct a bijective map to a rep-
resentation space, under which the transformation of the distribution of the data is approximately
factorized and has identical and known marginal densities. The simplicity of the latent distribution
under the model allows us to feasibly explore it, and the invertibility of the map to characterize con-
traction of measure across it. This enables us to compute normalized densities for out-of-sample data.
This combination of tractability and flexibility allows us to tackle a variety of probabilistic tasks on
high-dimensional datasets, including: rapid computation of normalized densities at test-time without
evaluating a partition function; generation of samples without MCMC; and characterization of the
joint entropy of the data.

1 Introduction

Many core machine learning tasks are concerned with density estimation and manifold discovery. Proba-
bilistic graphical models are a dominating approach for constructing sophisticated density estimates, but
they often present computational difficulties in practice. For example, undirected models, such as the
Boltzmann machine [Smolensky, 1986, Hinton et al., 2006] are able to achieve compact and efficiently-
computed latent variable representations at the cost of only providing unnormalized density estimates.
Directed belief networks [Pearl, 1988, Neal, 1992, Adams et al., 2010], on the other hand, enable one
to specify a priori marginals of hidden variables and are easily normalized, but require costly inference
procedures. Bayesian nonparametric density estimation (e.g., [Escobar and West, 1995, Rasmussen, 2000,
Adams et al., 2009]) is another flexible approach, but it often requires costly inference procedures and does
not typically scale well to high-dimensional data.

Manifold learning provides an alternative way to implicitly characterize the density of data via a low-
dimensional embedding, e.g., locally-linear embeddding [Roweis and Saul, 2000], IsoMap [Tenenbaum et al.,
2000], the Gaussian process latent variable model [Lawrence, 2005], kernel PCA [Schölkopf et al., 1998],
and t-SNE [Van der Maaten and Hinton, 2008]. Typically, however, these methods have emphasized visu-
alization as the primary motivation. A notable exception is the autoencoder neural network [Cottrell et al.,
1987, Hinton and Salakhutdinov, 2006], which seeks embeddings in representation spaces that themselves
can be high dimensional. Unfortunately, the autoencoder does not have a clear probabilistic interpretation
(although see [Rifai et al., 2012] for a discussion).

∗http://math.mit.edu/~rippel
†http://people.seas.harvard.edu/~rpa

1

[Rippel and Adams, arXiv 2013]
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NICE: NON-LINEAR INDEPENDENT COMPONENTS
ESTIMATION

Laurent Dinh David Krueger Yoshua Bengio⇤
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 3J7

ABSTRACT

We propose a deep learning framework for modeling complex high-dimensional
densities called Non-linear Independent Component Estimation (NICE). It is
based on the idea that a good representation is one in which the data has a dis-
tribution that is easy to model. For this purpose, a non-linear deterministic trans-
formation of the data is learned that maps it to a latent space so as to make the
transformed data conform to a factorized distribution, i.e., resulting in indepen-
dent latent variables. We parametrize this transformation so that computing the
determinant of the Jacobian and inverse Jacobian is trivial, yet we maintain the
ability to learn complex non-linear transformations, via a composition of simple
building blocks, each based on a deep neural network. The training criterion is
simply the exact log-likelihood, which is tractable. Unbiased ancestral sampling
is also easy. We show that this approach yields good generative models on four
image datasets and can be used for inpainting.

1 INTRODUCTION

One of the central questions in unsupervised learning is how to capture complex data distributions
that have unknown structure. Deep learning approaches (Bengio, 2009) rely on the learning of a
representation of the data that would capture its most important factors of variation. This raises the
question: what is a good representation? Like in recent work (Kingma and Welling, 2014; Rezende
et al., 2014; Ozair and Bengio, 2014), we take the view that a good representation is one in which
the distribution of the data is easy to model. In this paper, we consider the special case where we
ask the learner to find a transformation h = f(x) of the data into a new space such that the resulting
distribution factorizes, i.e., the components hd are independent:

pH(h) =
Y

d

pHd(hd).

The proposed training criterion is directly derived from the log-likelihood. More specifically, we
consider a change of variables h = f(x), which assumes that f is invertible and the dimension of h
is the same as the dimension of x, in order to fit a distribution pH . The change of variable rule gives
us:

pX(x) = pH(f(x))|det @f(x)
@x

|. (1)

where @f(x)
@x is the Jacobian matrix of function f at x. In this paper, we choose f such that the

determinant of the Jacobian is trivially obtained. Moreover, its inverse f�1 is also trivially obtained,
allowing us to sample from pX(x) easily as follows:

h ⇠ pH(h)

x = f
�1(h) (2)

A key novelty of this paper is the design of such a transformation f that yields these two properties of
“easy determinant of the Jacobian” and “easy inverse”, while allowing us to have as much capacity

⇤Yoshua Bengio is a CIFAR Senior Fellow.
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Variational Inference with Normalizing Flows

Danilo Jimenez Rezende DANILOR@GOOGLE.COM
Shakir Mohamed SHAKIR@GOOGLE.COM

Google DeepMind, London

Abstract

The choice of approximate posterior distribution
is one of the core problems in variational infer-
ence. Most applications of variational inference
employ simple families of posterior approxima-
tions in order to allow for efficient inference, fo-
cusing on mean-field or other simple structured
approximations. This restriction has a signifi-
cant impact on the quality of inferences made
using variational methods. We introduce a new
approach for specifying flexible, arbitrarily com-
plex and scalable approximate posterior distribu-
tions. Our approximations are distributions con-
structed through a normalizing flow, whereby a
simple initial density is transformed into a more
complex one by applying a sequence of invertible
transformations until a desired level of complex-
ity is attained. We use this view of normalizing
flows to develop categories of finite and infinites-
imal flows and provide a unified view of ap-
proaches for constructing rich posterior approxi-
mations. We demonstrate that the theoretical ad-
vantages of having posteriors that better match
the true posterior, combined with the scalability
of amortized variational approaches, provides a
clear improvement in performance and applica-
bility of variational inference.

1. Introduction

There has been a great deal of renewed interest in varia-
tional inference as a means of scaling probabilistic mod-
eling to increasingly complex problems on increasingly
larger data sets. Variational inference now lies at the core of
large-scale topic models of text (Hoffman et al., 2013), pro-
vides the state-of-the-art in semi-supervised classification
(Kingma et al., 2014), drives the models that currently pro-
duce the most realistic generative models of images (Gre-
gor et al., 2014; 2015; Rezende et al., 2014; Kingma &
Welling, 2014), and are a default tool for the understanding

Proceedings of the 32nd
International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

of many physical and chemical systems. Despite these suc-
cesses and ongoing advances, there are a number of disad-
vantages of variational methods that limit their power and
hamper their wider adoption as a default method for statis-
tical inference. It is one of these limitations, the choice of
posterior approximation, that we address in this paper.

Variational inference requires that intractable posterior dis-
tributions be approximated by a class of known probability
distributions, over which we search for the best approxima-
tion to the true posterior. The class of approximations used
is often limited, e.g., mean-field approximations, implying
that no solution is ever able to resemble the true posterior
distribution. This is a widely raised objection to variational
methods, in that unlike other inferential methods such as
MCMC, even in the asymptotic regime we are unable re-
cover the true posterior distribution.

There is much evidence that richer, more faithful posterior
approximations do result in better performance. For exam-
ple, when compared to sigmoid belief networks that make
use of mean-field approximations, deep auto-regressive
networks use a posterior approximation with an auto-
regressive dependency structure that provides a clear im-
provement in performance (Mnih & Gregor, 2014). There
is also a large body of evidence that describes the detri-
mental effect of limited posterior approximations. Turner
& Sahani (2011) provide an exposition of two commonly
experienced problems. The first is the widely-observed
problem of under-estimation of the variance of the poste-
rior distribution, which can result in poor predictions and
unreliable decisions based on the chosen posterior approx-
imation. The second is that the limited capacity of the pos-
terior approximation can also result in biases in the MAP
estimates of any model parameters (and this is the case e.g.,
in time-series models).

A number of proposals for rich posterior approximations
have been explored, typically based on structured mean-
field approximations that incorporate some basic form of
dependency within the approximate posterior. Another po-
tentially powerful alternative would be to specify the ap-
proximate posterior as a mixture model, such as those de-
veloped by Jaakkola & Jordan (1998); Jordan et al. (1999);
Gershman et al. (2012). But the mixture approach limits
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History of Normalizing Flows
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Dataset PixelRNN [46] Real NVP Conv DRAW [22] IAF-VAE [34]
CIFAR-10 3.00 3.49 < 3.59 < 3.28

Imagenet (32⇥ 32) 3.86 (3.83) 4.28 (4.26) < 4.40 (4.35)
Imagenet (64⇥ 64) 3.63 (3.57) 3.98 (3.75) < 4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)

LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)

CelebA 3.02 (2.97)

Table 1: Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results for
CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in parenthesis
for reference).

Figure 5: On the left column, examples from the dataset. On the right column, samples from the
model trained on the dataset. The datasets shown in this figure are in order: CIFAR-10, Imagenet
(32⇥ 32), Imagenet (64⇥ 64), CelebA, LSUN (bedroom).

4.2 Results

We show in Table 1 that the number of bits per dimension, while not improving over the Pixel RNN
[46] baseline, is competitive with other generative methods. As we notice that our performance
increases with the number of parameters, larger models are likely to further improve performance.
For CelebA and LSUN, the bits per dimension for the validation set was decreasing throughout
training, so little overfitting is expected.

We show in Figure 5 samples generated from the model with training examples from the dataset
for comparison. As mentioned in [62, 22], maximum likelihood is a principle that values diversity

8
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DENSITY ESTIMATION USING REAL NVP

Laurent Dinh⇤

Montreal Institute for Learning Algorithms
University of Montreal
Montreal, QC H3T1J4

Jascha Sohl-Dickstein
Google Brain

Samy Bengio
Google Brain

ABSTRACT

Unsupervised learning of probabilistic models is a central yet challenging problem
in machine learning. Specifically, designing models with tractable learning, sam-
pling, inference and evaluation is crucial in solving this task. We extend the space
of such models using real-valued non-volume preserving (real NVP) transforma-
tions, a set of powerful, stably invertible, and learnable transformations, resulting
in an unsupervised learning algorithm with exact log-likelihood computation, exact
and efficient sampling, exact and efficient inference of latent variables, and an
interpretable latent space. We demonstrate its ability to model natural images
on four datasets through sampling, log-likelihood evaluation, and latent variable
manipulations.

1 Introduction

The domain of representation learning has undergone tremendous advances due to improved super-
vised learning techniques. However, unsupervised learning has the potential to leverage large pools of
unlabeled data, and extend these advances to modalities that are otherwise impractical or impossible.

One principled approach to unsupervised learning is generative probabilistic modeling. Not only do
generative probabilistic models have the ability to create novel content, they also have a wide range
of reconstruction related applications including inpainting [61, 46, 59], denoising [3], colorization
[71], and super-resolution [9].

As data of interest are generally high-dimensional and highly structured, the challenge in this domain
is building models that are powerful enough to capture its complexity yet still trainable. We address
this challenge by introducing real-valued non-volume preserving (real NVP) transformations, a
tractable yet expressive approach to modeling high-dimensional data.

This model can perform efficient and exact inference, sampling and log-density estimation of data
points. Moreover, the architecture presented in this paper enables exact and efficient reconstruction
of input images from the hierarchical features extracted by this model.

2 Related work

Substantial work on probabilistic generative models has focused on training models using maximum
likelihood. One class of maximum likelihood models are those described by probabilistic undirected
graphs, such as Restricted Boltzmann Machines [58] and Deep Boltzmann Machines [53]. These
models are trained by taking advantage of the conditional independence property of their bipartite
structure to allow efficient exact or approximate posterior inference on latent variables. However,
because of the intractability of the associated marginal distribution over latent variables, their
training, evaluation, and sampling procedures necessitate the use of approximations like Mean
Field inference and Markov Chain Monte Carlo, whose convergence time for such complex models

⇤Work was done when author was at Google Brain.
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Dataset PixelRNN [46] Real NVP Conv DRAW [22] IAF-VAE [34]
CIFAR-10 3.00 3.49 < 3.59 < 3.28

Imagenet (32⇥ 32) 3.86 (3.83) 4.28 (4.26) < 4.40 (4.35)
Imagenet (64⇥ 64) 3.63 (3.57) 3.98 (3.75) < 4.10 (4.04)
LSUN (bedroom) 2.72 (2.70)

LSUN (tower) 2.81 (2.78)
LSUN (church outdoor) 3.08 (2.94)

CelebA 3.02 (2.97)

Table 1: Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results for
CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in parenthesis
for reference).
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We show in Figure 5 samples generated from the model with training examples from the dataset
for comparison. As mentioned in [62, 22], maximum likelihood is a principle that values diversity
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History of Normalizing Flows

Glow: Generative Flow

with Invertible 1⇥1 Convolutions

Diederik P. Kingma
*
, Prafulla Dhariwal

⇤

OpenAI, San Francisco

Abstract

Flow-based generative models (Dinh et al., 2014) are conceptually attractive due to
tractability of the exact log-likelihood, tractability of exact latent-variable inference,
and parallelizability of both training and synthesis. In this paper we propose Glow,
a simple type of generative flow using an invertible 1⇥ 1 convolution. Using our
method we demonstrate a significant improvement in log-likelihood on standard
benchmarks. Perhaps most strikingly, we demonstrate that a generative model
optimized towards the plain log-likelihood objective is capable of efficient realistic-
looking synthesis and manipulation of large images. The code for our model is
available at https://github.com/openai/glow.

1 Introduction

Two major unsolved problems in the field of machine learning are (1) data-efficiency: the ability to
learn from few datapoints, like humans; and (2) generalization: robustness to changes of the task or
its context. AI systems, for example, often do not work at all when given inputs that are different
from their training distribution. A promise of generative models, a major branch of machine learning,

⇤Equal contribution.

Preprint. Work in progress.

Figure 1: Synthetic celebrities sampled from our model; see Section 3 for architecture and method,
and Section 5 for more results.
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History of Normalizing Flows

[Kingma and Dhariwal, NeurIPS 2018]



History of Normalizing Flows

[Kingma and Dhariwal, NeurIPS 2018]



Normalizing Flows

Change of variables


  


where  is an invertible, differentiable function 
and  is the Jacobian of 

pX(x) = pZ( f(x)) det Df(x)

Z = f(X)
Df(x) f(x)

f(x) = x1
3

pX(x)

pZ(z)

Volume Correction

Invertible 
Transform



Normalizing Flows

Can represent a given  in terms of  and 


  

pX(x) pZ(z) f(x)

pX(x) = pZ( f(x)) det Df(x)

pZ(z)

f(x)

pX(x)



Normalizing Flows

Learn  to transform data distribution  into 


Two pieces


• Base Measure:  - Typically selected as 


• Flow:  - Must be invertible and differentiable

f(x) pX(x) pZ(z)

pZ(z) 𝒩(z |0, I)

f(x)



Normalizing Flows

Density evaluation:


 


Sampling:


• Sample 


• Compute 

pX(x) = pZ( f(x)) det Df(x)

z ∼ pZ( ⋅ )

x = f −1(z)

pZ(z)

f −1(z)

pX(x)

f(x)



Normalizing Flows

Training can be done with maximum (log-)likelihood


 


where  are the parameters of the flow  

max
θ

N

∑
i=1

log pZ( f(xi |θ)) + log | det Df(xi |θ) |

θ f(x |θ)



Flows

A flow is a parametric function  which:


• is invertible


• is differentiable


• has an efficiently computable inverse and Jacobian determinant 


Also sometimes called a flow layer, bijection, etc.


Designing and understanding flows is the core technical challenge with NFs

f(x)

| det Df(x) |



Composition of Flows

Invertible, differentiable functions are closed under composition


 


Build up a complex flow from composition of simpler flows

f = fK ∘ fK−1 ∘ ⋯ ∘ f2 ∘ f1



Composition of Flows

f1 f2 f3 f4

f −1
1 f −1

2 f −1
3 f −1

4

f −1 = f −1
1 ∘ f −1

2 ∘ f −1
3 ∘ f −1

4

f = f4 ∘ f3 ∘ f2 ∘ f1



Composition of Flows

Determinant:


 


Likelihood:


 

det Df = det
K

∏
k=1

Dfk =
K

∏
k=1

det Dfk

max
θ

N

∑
i=1

log pZ( f(xi |θ)) +
K

∑
k=1

log | det Dfk(xi |θ) |



Linear Flows

A linear transformation can be a flow if the matrix is invertible


 


Inverse:  


Determinant:  


Problem:


• Inexpressive (linear functions are closed under composition)


• Determinant/inverse could be 

f(x) = Ax + b

f −1(z) = A−1(z − b)

det Df(x) = det A

O(d3)



Linear Flows

Restricting the form of the matrix can reduce the determinant/inverse costs

Inverse Determinant

Full   

Diagonal

Triangular

Block Diagonal

LU Factorized

[Kingma and Dhariwal 2018]

Spatial Convolution

[Hoogeboom et al 2019; Karami et al., 2019]

1x1 Convolution

[Kingma and Dhariwal 2018]

O(d) O(d)

O(c3d)O(c3d)
O(d)O(d2)

O(d2) O(d)
O(d log d) O(d)
O(c3 + c2d) O(c3)

O(d3) O(d3)



Coupling Flows

Coupling Network θ( ⋅ )

Coupling 
Transform

Split

xA

xB ̂f(xB |θ(xA))

Concat.

f(x) = [ xA

̂f(xB |θ(xA))]x

[Figure adapted from Jason Yu]



Coupling Flows: Inverse

Coupling Network θ( ⋅ )

Inverse Coupling 
Transform

Concat.

̂f −1(zB |θ(zA))

zA

zB

Split

f −1(z) = [ zA

̂f −1(zB |θ(zA))] z

[Figure adapted from Jason Yu]



Coupling Flows

Jacobian:


 


Determinant:


  

Df(x) = [
I 0

∂
∂xA

̂f(xB |θ(xA)) D ̂f(xB |θ(xA))]

det Df(x) = det D ̂f(xB |θ(xA))

[Dinh et al 2014 & Dinh et al 2016]



Coupling Flows

Can make  arbitrarily complex, e.g., MLP, CNN, etc


Important to change the splits to ensure full expressiveness, but how?

θ(xA)

[Dinh et al 2014 & Dinh et al 2016]



Coupling Flows

Coupling Network θ( ⋅ )

Coupling 
Transform

Split

xA

xB ̂f(xB |θ(xA))

Concat.

f(x)
x

[Figure adapted from Jason Yu]

Permutation

or


Linear 
Transform



Coupling Flows

Coupling Transforms


• Additive [NICE, Dinh et al 2014]





• Affine [RealNVP, Dinh et al 2016]


 


• MLPs [NAF, Huang et al, 2018], MixLogCDF [Flow++, Ho et al, 2019], Splines 
[Spline Flow, Durkan et al, 2019], etc…

̂f(x | t) = x + t

̂f(x |s, t) = s ⊙ x + t



Affine Coupling Flows

Coupling Network θ( ⋅ )

Coupling 
Transform

Split

xA

xB ̂f(xB |θ(xA))

Concat.

f(x) = [ xA

̂f(xB |θ(xA))]x

[Figure adapted from Jason Yu]

Affine 
Transform

s(xA) ⊙ xB + t(xA)

[Figure adapted from Jason Yu]

f(x) = [ xA

s(xA) ⊙ xB + t(xA)]



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport 
for Density Estimation and Bayesian Inference”. AAAI 2021.]



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport 
for Density Estimation and Bayesian Inference”. AAAI 2021.]



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport 
for Density Estimation and Bayesian Inference”. AAAI 2021.]



Autoregressive Models as Flows

Autoregressive models are a form of normalizing flow


 p(x) =
D

∏
i=1

p(xi |x<i)



Autoregressive Models as Flows

Gaussian marginals


 


Reparameterization trick:


  where  

p(xi |x<i) = 𝒩 (xi |μ(x<i), σ2(x<i))

xi = μ(x<i) + σ(x<i)zi zi ∼ 𝒩(0,1)

[Kingma et al NeurIPS 2016;  
Papamakarios et al NeurIPS 2017]



Autoregressive Models as Flows

(Affine) Autoregressive Flow:


 


  


Determinant:


f −1
i (z) = μ( f −1

<i (z<i)) + σ( f −1
<i (z<i))zi

fi(x) =
xi − μ(x<i)

σ(x<i)

det Df(x) = ∏
i

σ−1(x<i)

[Kingma et al NeurIPS 2016;  
Papamakarios et al NeurIPS 2017]



Autoregressive Models as Flows

Sampling is sequential and slow


Density evaluation, ie, computing , can be done in 
parallel

f(x)

[Kingma et al NeurIPS 2016]

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16



Autoregressive Models as Flows

(Affine) Inverse Autoregressive Flow:


 





Determinant:


fi(x) = μ( f<i(x<i)) + σ( f<i(x<i))xi

f −1
i (z) =

zi − μ(z<i)
σ(z<i)

det Df(x) = ∏
i

σ( f<i(x<i))

[Kingma et al NeurIPS 2016;  
Papamakarios et al NeurIPS 2017]



Multi-Scale Flows

A flow preserves dimensionality, but this is expensive in high dimensions


Just stop using subsets of dimensions


Practically, acts like dropping dimensions

[Dinh et al 2016]



Multi-Scale Flows

f1
f2 f3

x z

[Dinh et al 2016]



Multi-Scale Flows

Multi-scale flows are just a special coupling flow


 


• Important: must track “dropped” dimensions to preserve invertibility

f(x) = (xA, ̂f(xB |θ))



Multi-Scale Flows

How do we split the dimensions for images?



“Squeeze” the spatial arrangement to get more channels

11
12

15
16

3
4

7
8

9
10

13
14

Multi-Scale Flows

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1
2

5
6

n × n × c
n
2

×
n
2

× 4c



Discrete-time Normalizing Flows

f1 f2 f3 f4

f = f4 ∘ f3 ∘ f2 ∘ f1



Continuous-time Normalizing Flows



FFJORD

ODEs as a flow


  with  


Inverse:


  with  

f(x) = y0 + ∫
1

0
h(t, yt)dt y0 = x

f −1(z) = y1 + ∫
0

1
h(t, yt)dt y1 = z

[Grathwohl and Chen et al 2019]



FFJORD

Continuous change of variable

[Grathwohl and Chen et al 2019]

log pX(x) = log pZ( f(x)) + ∫
1

0
Tr ( ∂h

∂y
(t, yt)) dt



FFJORD

Hutchinson Trace Estimator


 ∫
1

0
Tr ( ∂h

∂y
(t, yt)) dt = 𝔼ϵ∼p(ϵ) [∫

1

0
ϵT ∂h

∂y
(t, yt)ϵdt]

[Grathwohl and Chen et al 2019]



FFJORD

[Grathwohl and Chen et al 2019]



Training PGMs with Maximum Likelihood

Normalizing Flows are a model of continuous data


Pixel intensities are typically discrete or quantized



Training PGMs with Maximum Likelihood

ML learning of continuous models w/ discrete data can cause singularities


Really want to optimize


 PY(y) = ∫[0,1]D

pX(y + u)pU(u)du
Probability of 

Discrete Values

Probability Density of 
Continuous Values

Probability Density of 
Quantization Noise



Uniform Dequantization

During training, dequantize the data (i.e., add noise)


 


Simplest choice of  is uniform

PY(y) = ∫[0,1]D

pX(y + u)pU(u)du

≈
1
K

K

∑
k=1

pX(y + uk)

pU



Variational Dequantization

View  as a variational distribution and learn it


      

pU

log PY(y) ≥ ∫[0,1]D

log
pX(y + u)
pU(u |y)

du

≈
1
K

K

∑
k=1

log
pX(y + uk)
pU(uk |y)

Learning Discrete Distributions by Dequantization

Emiel Hoogeboom 1 * Taco S. Cohen 2 Jakub M. Tomczak 2

Abstract
Media is generally stored digitally and is therefore
discrete. Many successful deep distribution mod-
els in deep learning learn a density, i.e., the dis-
tribution of a continuous random variable. Naı̈ve
optimization on discrete data leads to arbitrarily
high likelihoods, and instead, it has become stan-
dard practice to add noise to datapoints. In this
paper, we present a general framework for de-
quantization that captures existing methods as a
special case. We derive two new dequantization
objectives: importance-weighted (iw) dequantiza-
tion and Rényi dequantization. In addition, we in-
troduce autoregressive dequantization (ARD) for
more flexible dequantization distributions. Empir-
ically we find that iw and Rényi dequantization
considerably improve performance for uniform
dequantization distributions. ARD achieves a neg-
ative log-likelihood of 3.06 bits per dimension on
CIFAR10, which to the best of our knowledge is
state-of-the-art among distribution models that do
not require autoregressive inverses for sampling.

1. Introduction
Today, virtually all media is handled digitally. As such, it is
stored in bits and is therefore discrete. Deep distributions
models (Larochelle & Murray, 2011; Kingma & Welling,
2014) aim to learn a distribution model pmodel(x) for high-
dimensional data. Many of these models are density models
(Uria et al., 2013; van den Oord & Schrauwen, 2014; Dinh
et al., 2017; Papamakarios et al., 2017), meaning they learn
a distribution of a continuous random variable.

Problematically, the naı̈ve maximum likelihood solution
for a continuous density model on discrete data, may place

*Research done while completing an internship at Qualcomm AI
Research, Qualcomm Technologies Netherlands. Currently a Ph.D.
student at the University of Amsterdam, Netherlands. 1University
of Amsterdam, Netherlands 2Qualcomm AI Research, Qualcomm
Technologies Netherlands B.V.. Qualcomm AI Research is an
initiative of Qualcomm Technologies, Inc.. Correspondence to:
Emiel Hoogeboom <e.hoogeboom@uva.nl>.

Preprint. Work in progress.

0 1 2
(a) Pdata(x)

0 1 2
(b) uniform q(v|x)

0 1 2
(c) flexible q(v|x)

Figure 1. A discrete distribution Pdata(x) is dequantized by
q(v|x), which is visualized in the marginal continuous distribution
q(v) = Ex⇠Pdata [q(v|x)]. In this example the continuous density
model p(v) is relatively simple, and two dequantization distribu-
tions q(v|x) are considered: one is simple and the other is flexible.
Suppose that the dequantization distribution q(v|x) is uniform.
Then p(v) is encouraged to have relatively high uncertainty under
variational inference. In contrast, when the dequantization distri-
bution q(v|x) is flexible it can match p(v) which considerably
improves the tightness of the variational bound.

arbitrarily high likelihood on the discrete locations (Theis
et al., 2016) (for an example see Figure 2a). Since discrete
and continuous spaces are topologically different, a proba-
bility density does not necessarily approximate a probability
mass. After all, the total probability at a single point under
a density is always zero.

To deal with this issue, it has become common practice to
add noise to datapoints which dequantizes the data. Theis
et al. (2016) show that if noise is added in a particular way,
the likelihood from the continuous model is a lowerbound
of the discrete model (for an example see Figure 2b). This
is important as it allows comparison of discrete and continu-
ous models directly using the likelihood. Recently Ho et al.
(2019) show that improving the flexibility of the noise dis-
tribution allows tighter bounds which improves modelling
performance.

Although the benefits of learned dequantization have been
demonstrated in a specific case, the effects of dequantization
are not yet fully understood. How do dequantization and
density model interact? What is the effect of increased
dequantization flexibility? Are there more sophisticated
optimization objectives?

In this paper, we present a general framework for dequan-
tization via latent variable modelling. In this framework,
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Common Flow Architectures for Images

Transformations Dequantization Multi-Scale

NICE [Dinh et al, 2014] Additive Coupling + 
Diagonal Linear Uniform No

RealNVP [Dinh et al, 2016] Affine Coupling + 
Channelwise Permutation Uniform Yes

Glow [Kingma and 
Dhariwal, 2018]

Affine Coupling + 
Channelwise Linear Uniform Yes

Flow++ [Ho et al, 2019] MixLogCDF Coupling + 
Channelwise Linear Variational Yes



Conclusions
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