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(Generative Models

A generative model is a probability distribution over a random variable X which
we attempt to learn from a set of observed data {Xi}f.\; ; With some probability

density px(X) parameterized by 6

Given a GM we may want to generate samples, evaluate new data points, etc

Different distributions and different learning objectives and approaches lead to
different GMs, e.g., GANs, VAES, NFs etc



GMs: Mixture Models

(Gaussian) Mixture Model

a classical example of a GM which has been
studied extensively

trained elther via ML or a variational bound on
ikelihood

sampling and evaluating px(X) is straightforward

performance scales poorly with dimensionality HEW20 W &

. 8
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GMs: Energy-based Models
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[Grathwohl et al, ICLR 2020]

- familiar in classical computer vision

o SOme recent SUCCGSSGS [Blake, Kohli and Rother eds, 2011]

- training and sampling from px(X) is
complex, typically requiring MCMC

[Song and Kingma, 2021]



GMs: Generative Adversarial Networks

Generative Adversarial Networks
impressive results

trained through an adversarial process
which (roughly) minimizes a divergence or
Integral probabllity metric

[Karras et al, StyleGAN2 2019]

sampling from px(X) is straightforward

| | | Generative Adversarial Nets
evaluating px(X) is generally not possible

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle
Université de Montréal

Montréal, QC H3C 3J7



GMs: Variational Autoencoders

Variational Auto-encoders
orobabillistic latent variables models

successful In learning useful low-dimensional
representations

trained with bound on marginal likelihood

sampling from px(X) is straightforward

approximate evaluation of px(X) is possible

Prior distribution: pe(z)
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What are Normalizing Flows?

Normalizing Flows are a GM built on invertible transformations

They are generally:

—fficient to sample from px(X)

—fficient to evaluate px(X)
+ Highly expressive
- Useful latent representation

+ Straightforward to train



History of Normal

A family of non-parametric density estimation algorithms

E. G. TABAK
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ESTIMATION

Laurent Dinh David Krueger Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

[Tabak and Turner, CPAM 2013]

2010

High-Dimensional Probability Hstimation with Deep Density

[Dinh et al, ICLR 2015]
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NICE: NON-LINEAR INDEPENDENT COMPONENTS
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[Rezende and Mohamed, ICML 2015]



History of Normalizing Flows

DENSITY ESTIMATION USING REAL NVP

Laurent Dinh*
Montreal Institute for Learning Algorithms
University of Montreal

Montreal, QC H3T1J4

Jascha Sohl-Dickstein Samy Bengio
Google Brain Google Brain
T — T

[Dinh et al, ICLR 2017]




History of Normalizing Flows

Glow: Generative Flow
with Invertible 1x1 Convolutions

Diederik P. Kingma“, Prafulla Dhariwal*
OpenAl, San Francisco

[Kingma and Dhariwal, NeurlPS 2018]
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History of Normalizing Flows

[Kingma and Dhariwal, NeurlPS 2018]



History of Normalizing Flows

[Kingma and Dhariwal, NeurlPS 2018]



Normalizing Flows

Change of variables

Volume Correction Px(X)
px(X) = pz (x| det D) |
Invertible T
Transform

where Z; = f(X) is an invertible, differentiable function
and Df(X) is the Jacobian of f(X)

—




INg Flows

IZ

Normal

in terms of p,(Z) and f(X)

Can represent a given px(X)

px(X) = py(f(x)) | det Df(x)




Normalizing Flows

Learn f(X) to transform data distribution px(X) into pz(z)

Two pieces

- Base Measure: p,(z) - Typically selected as /4 (z |0, I)

- Flow: f(X) - Must be invertible and differentiable



Normalizing Flows

Density evaluation:

px(X) = py(f(x)) | det Df(x)

Sampling:

Sample Z ~ p,( - )

. Compute X = f~1(z)




Normalizing Flows

Training can be done with maximum (log-)likelihood

N
mHaX Z log p7(f(x;160)) + log| det Df(x;|0) |
=1

where 6 are the parameters of the flow f(X | &)



Flows

A flow is a parametric function f(X) which:

+ IS Invertible
- IS differentiable
- has an efficiently computable inverse and Jacobian determinant | det Df(x) |

Also sometimes called a flow layer, bijection, etc.

Designing and understanding flows Is the core technical challenge with NFs



Composition of Flows

INnvertible, differentiable functions are closed under composition

f=fiofeoroohof,

Build up a complex flow from composition of simpler flows



Composition of Flows




Composition of Flows

Determinant:

K K
det Df = det Hka — H det Df,
k=1 k=1
Likelihood:

N K
m@ax Z log p,(f(x:]0)) + Z log | det Df,(x:|0) |
i=1 k=1



Linear Flows

A linear transtormation can be a flow If the matrix 1s invertible
f(x) = Ax+Db

nverse: f~1(z) = A~!(z — b)

Determinant: det Df(X) = det A

Problem:

+ Inexpressive (linear functions are closed under composition)

Determinant/inverse could be O(d?)




Linear Flows

Restricting the form of the matrix can reduce the determinant/inverse costs

Inverse Determinant
Ful 0(d”) O(d”)
Diagonal O(d) O(d)
Triangular 0(d?) O(d)
Block Diagonal O(c>d) O(c’d)
o bactrzed . O(d) O(d)
oobdtial Convolution  O(dlogd)  O(d)
L Copeltion, O +¢%d) O(c?)




Coupling Flows

X

A
/9= [f<x3\9<xA>>]

Concat.

Split

F(xB|6(x*))

[Figure adapted from Jason Yu|



Coupling Flows: Inverse
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[Figure adapted from Jason Yu|



Coupling Flows

Jacobian:

1 0

DIV = 12 ik o)) D o)

Determinant:

det Df(x) = det DA(x® | 9(x*))

[Dinh et al 2014 & Dinh et al 2016]



Coupling Flows

Can make H(XA) arbitrarily complex, e.g., MLP, CNN, etc

Important to change the splits to ensure full expressiveness, but how?

[Dinh et al 2014 & Dinh et al 2016]



Coupling Flows

J(X)

Permutation
or
Linear
Transform

X

Concat.

Split

F(xB|6(x*))

[Figure adapted from Jason Yu|



Coupling Flows

Coupling Transforms

- Additive [NICE, Dinh et al 2014]
fx|t) =x +1t
- Affine [RealNVP, Dinh et al 2016}

f(x|s,t) =s O x +t

- MLPs [NAF, Huang et al, 2018|, MixLogCDF [Flow++, Ho et al, 2019], Splines
Spline Flow, Durkan et al, 2019], etc...



Affine Coupling Flows

A LA

. X X
1= [ﬁ(x‘*)\@(x%] t(XA)l

Concat.

s(x /xS i px )

[Figure adapted from Jason Yu|



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]



Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]



Autoregressive Models as Flows

Autoregressive models are a form of normalizing flow

D
px) = | | p(xi|x))
=1



Autoregressive Models as Flows

Gaussian marginals
(X)) = A (%] p(x ), 07(x )
P\ | X4 i | &) <i
Reparameterization trick:

x, = u(x_;) + o(x_;)z; where z. ~ A(0,1)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]



Autoregressive Models as Flows

(Affine) Autoregressive Flow:

f_l(z) = u( 1(Z<z)) + o( 1(Z<z))Z

X; — u(Xg;)

o(X ;)

Ji(X) =

Determinant:

det Df(x) = | [ o7 (x)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]



Autoregressive Models as Flows

Sampling is sequential and slow

Density evaluation, ie, computing f(X), can be done in T2 35 4
parallel 5 8 7 8§

9 10 11 12

13 14 15 10

[Kingma et al NeurlPS 2016]



Autoregressive Models as Flows

(Affine) Inverse Autoregressive Flow:

JiX) = p(f (X)) + o(f (X)X,

z; — M(Z;)

o(Z;)

f7(@) =

Determinant:

det Df(x) = | | o(f.i(x)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]



Multi-Scale Flows

A flow preserves dimensionality, but this is expensive in high dimensions
Just stop using subsets of dimensions

Practically, acts like dropping dimensions

[Dinh et al 2016]



Multi-Scale Flows

[Dinh et al 2016]



Multi-Scale Flows

Multi-scale flows are just a special coupling flow

f(x) = (x4, f(x?| 0))

- Important: must track “dropped” dimensions to preserve invertibility



Multi-Scale Flows

How do we split the dimensions for images”

height

width

-
4>

channel



Multi-Scale Flows

‘Squeeze” the spatial arrangement to get more channels

n n
nXnxXec — X — X 4c

1T 2 08 | 4

5 O € |5
9 10 11 12
13 14 15 10




Discrete-time Normalizing Flows




Continuous-time Normalizing Flows




FFJORD

ODEs as a flow

ek
p(z(t))

f(xX) =y, + | A y)dt with y, =X
0

INnverse:

0
fTl(@) =y, + | hty)dt with y, =z

[Grathwohl and Chen et al 2019]



FFJORD

Continuous change of variable

L[ on
log px(x) = log pz(f(X)) + [ I'r (a—y(f, yt)) dt
0

[Grathwohl and Chen et al 2019]



FFJORD

Hutchinson lrace Estimator

JlT (_@ (¢ y)) dt = [1 T—a (t,y,)edt
r . — _€N € € o €

[Grathwohl and Chen et al 2019]



FFJORD
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[Grathwohl and Chen et al 2019]



Training PGMs with Maximum Likelihood

Normalizing Flows are a model of continuous data

Pixel intensities are typically discrete or quantized

1 bit
2 bit
3 bit
4 bit
S bit
8 bit




Training PGMs with Maximum Likelihood

ML learning of continuous models w/ discrete data can cause singularities

Really want to optimize - |
Probability Density of

Continuous Values

G- | G T aW
[0 1]D

PI’Ob bility of Probability Density of
Discrete Values Quantization Noise




Uniform Deqguantization

During training, dequantize the data (i.e., add noise)

Py(y) = J px(y + uw)py(u)du
[0,1]°

0 1 2 0 1 2
Discrete Dequanitzed

1 K
N — Z pX(y —l— | § | k) distribution distribution
K k=1

Simplest choice of pyj is uniform



Variational Deguantization

View py as a variational distribution and learn it

log Py(y) > [ e S
0, 1]D pU(u‘Y)
SO m DDD_ AA
pu(ug|y) 0 0 1 2 0 1 2

[Hooaeboom et al 2020]

[Ho et al, 2019]



Common Flow Architectures for Images

NICE [Dinh et al, 2014]

RealNVP [Dinh et al, 2016]

Glow [Kingma and
Dhariwal, 2018]

Flow++ [Ho et al, 2019]

Transformations

Dequantization

Additive Coupling +

Diagonal Linear Unitorm
Affine Coupling + .
Channelwise Permutation Uniform
Affine Cqupllqg + Uniform
Channelwise Linear
MixLogCDF Coupling + Variational

Channelwise Linear

Multi-Scale

No

Yes

Yes

Yes




Conclusions
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