CVPR 2021 Tutorial:
Normalizing Flows and Invertible Neural Networks in Computer Vision

Marcus A. Brubaker and Ullrich Kothe

CVPR 2021 Tutorial:
Normalizing Flows and Invertible Neural Networks in Computer Vision

Introduction to Normalizing Flows

Marcus A. Brubaker

VECTOR
INSTITUTE

\

(Generative Models

A generative model is a probability distribution over a random variable X which
we attempt to learn from a set of observed data {Xi}f.\; ; With some probability

density px(X) parameterized by 6

Given a GM we may want to generate samples, evaluate new data points, etc

Different distributions and different learning objectives and approaches lead to
different GMs, e.g., GANs, VAES, NFs etc

GMs: Mixture Models

(Gaussian) Mixture Model

a classical example of a GM which has been
studied extensively

trained elther via ML or a variational bound on
ikelihood

sampling and evaluating px(X) is straightforward

performance scales poorly with dimensionality HEW20 W &

. 8
and added expressiveness [R,Fd"'d'w" :,:SM

GMs: Energy-based Models

LOPYIRIN &4 WITa WS

Energy-Based Models | Mato Fardon Fel

1SR S
2 o |
LHE 4

+ px(X) is unnormalizeo

_
3

b &

e

8 TR
' BL "SI"‘Q!! 'Y

[Grathwohl et al, ICLR 2020]

- familiar in classical computer vision

o SOme recent SUCCGSSGS [Blake, Kohli and Rother eds, 2011]

- training and sampling from px(X) is
complex, typically requiring MCMC

[Song and Kingma, 2021]

GMs: Generative Adversarial Networks

Generative Adversarial Networks
impressive results

trained through an adversarial process
which (roughly) minimizes a divergence or
Integral probabllity metric

[Karras et al, StyleGAN2 2019]

sampling from px(X) is straightforward

| | | Generative Adversarial Nets
evaluating px(X) is generally not possible

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio*
Département d’informatique et de recherche opérationnelle
Université de Montréal

Montréal, QC H3C 3J7

GMs: Variational Autoencoders

Variational Auto-encoders
orobabillistic latent variables models

successful In learning useful low-dimensional
representations

trained with bound on marginal likelihood

sampling from px(X) is straightforward

approximate evaluation of px(X) is possible

Prior distribution: pe(z)

Z-Space

.
.
.
.

Encoder: qe(z|x)

Decoder: pe(x|z)

A

L4
4
4
*
*
‘0
*
*
*
*
.
p . *
‘

X-space

Dataset: D

[Kingma and Welling, 2019]

What are Normalizing Flows?

Normalizing Flows are a GM built on invertible transformations

They are generally:

—fficient to sample from px(X)

—fficient to evaluate px(X)
+ Highly expressive
- Useful latent representation

+ Straightforward to train

History of Normal

A family of non-parametric density estimation algorithms

E. G. TABAK

Courant Institute of Mathematical Sciences

AND

CRISTINA V. TURNER
FaMAF, Universidad Nacional de Cordoba

ZzINng Flows

ESTIMATION

Laurent Dinh David Krueger Yoshua Bengio*
Département d’informatique et de recherche opérationnelle

Université de Montréal
Montréal, QC H3C 3J7

[Tabak and Turner, CPAM 2013]

2010

High-Dimensional Probability Hstimation with Deep Density

[Dinh et al, ICLR 2015]

RO13

Models

Oren Rippel* Ryan Prescott Adams'

Massachusetts Institute of Technology, Harvard University

Harvard University
rippel@math.mit.edu rpa@seas.harvard.edu

[Rippel and Adams, arXiv 2013]

ROl 4

NICE: NON-LINEAR INDEPENDENT COMPONENTS

ROL1S

Variational Inference with Normalizing Flows

Danilo Jimenez Rezende
Shakir Mohamed

Google DeepMind. London

DANILOR @ GOOGLE.COM
SHAKIR@GOOGLE.COM

[Rezende and Mohamed, ICML 2015]

History of Normalizing Flows

DENSITY ESTIMATION USING REAL NVP

Laurent Dinh*
Montreal Institute for Learning Algorithms
University of Montreal

Montreal, QC H3T1J4

Jascha Sohl-Dickstein Samy Bengio
Google Brain Google Brain
T — T

[Dinh et al, ICLR 2017]

History of Normalizing Flows

Glow: Generative Flow
with Invertible 1x1 Convolutions

Diederik P. Kingma“, Prafulla Dhariwal*
OpenAl, San Francisco

[Kingma and Dhariwal, NeurlPS 2018]

RO1lY

History of Normalizing Flows

[Kingma and Dhariwal, NeurlPS 2018]

History of Normalizing Flows

[Kingma and Dhariwal, NeurlPS 2018]

Normalizing Flows

Change of variables

Volume Correction Px(X)
px(X) = pz (x| det D) |
Invertible T
Transform

where Z; = f(X) is an invertible, differentiable function
and Df(X) is the Jacobian of f(X)

—

INg Flows

IZ

Normal

in terms of p,(Z) and f(X)

Can represent a given px(X)

px(X) = py(f(x)) | det Df(x)

Normalizing Flows

Learn f(X) to transform data distribution px(X) into pz(z)

Two pieces

- Base Measure: p,(z) - Typically selected as /4 (z |0, I)

- Flow: f(X) - Must be invertible and differentiable

Normalizing Flows

Density evaluation:

px(X) = py(f(x)) | det Df(x)

Sampling:

Sample Z ~ p,(-)

. Compute X = f~1(z)

Normalizing Flows

Training can be done with maximum (log-)likelihood

N
mHaX Z log p7(f(x;160)) + log| det Df(x;|0) |
=1

where 6 are the parameters of the flow f(X | &)

Flows

A flow is a parametric function f(X) which:

+ IS Invertible
- IS differentiable
- has an efficiently computable inverse and Jacobian determinant | det Df(x) |

Also sometimes called a flow layer, bijection, etc.

Designing and understanding flows Is the core technical challenge with NFs

Composition of Flows

INnvertible, differentiable functions are closed under composition

f=fiofeoroohof,

Build up a complex flow from composition of simpler flows

Composition of Flows

Composition of Flows

Determinant:

K K
det Df = det Hka — H det Df,
k=1 k=1
Likelihood:

N K
m@ax Z log p,(f(x:]0)) + Z log | det Df,(x:|0) |
i=1 k=1

Linear Flows

A linear transtormation can be a flow If the matrix 1s invertible
f(x) = Ax+Db

nverse: f~1(z) = A~!(z — b)

Determinant: det Df(X) = det A

Problem:

+ Inexpressive (linear functions are closed under composition)

Determinant/inverse could be O(d?)

Linear Flows

Restricting the form of the matrix can reduce the determinant/inverse costs

Inverse Determinant
Ful 0(d”) O(d”)
Diagonal O(d) O(d)
Triangular 0(d?) O(d)
Block Diagonal O(c>d) O(c’d)
o bactrzed . O(d) O(d)
oobdtial Convolution O(dlogd) O(d)
L Copeltion, O +¢%d) O(c?)

Coupling Flows

X

A
/9= [f<x3\9<xA>>]

Concat.

Split

F(xB|6(x*))

[Figure adapted from Jason Yu|

Coupling Flows: Inverse

ZA

—1 _
= F7'@P 6t

| Coupling Network 6 -) |

Split

Concat.

_dlInverseCouplingj g

1@ o))

[Figure adapted from Jason Yu|

Coupling Flows

Jacobian:

1 0

DIV = 12 ik o)) D o)

Determinant:

det Df(x) = det DA(x® | 9(x*))

[Dinh et al 2014 & Dinh et al 2016]

Coupling Flows

Can make H(XA) arbitrarily complex, e.g., MLP, CNN, etc

Important to change the splits to ensure full expressiveness, but how?

[Dinh et al 2014 & Dinh et al 2016]

Coupling Flows

J(X)

Permutation
or
Linear
Transform

X

Concat.

Split

F(xB|6(x*))

[Figure adapted from Jason Yu|

Coupling Flows

Coupling Transforms

- Additive [NICE, Dinh et al 2014]
fx|t) =x +1t
- Affine [RealNVP, Dinh et al 2016}

f(x|s,t) =s O x +t

- MLPs [NAF, Huang et al, 2018|, MixLogCDF [Flow++, Ho et al, 2019], Splines
Spline Flow, Durkan et al, 2019], etc...

Affine Coupling Flows

A LA

. X X
1= [ﬁ(x‘*)\@(x%] t(XA)l

Concat.

s(x /xS i px)

[Figure adapted from Jason Yu|

Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]

Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]

Recursive Coupling Flows: HINT

[Kruse & Detommaso et al. “HINT: Hierarchical Invertible Neural Transport
for Density Estimation and Bayesian Inference”. AAAIl 2021.]

Autoregressive Models as Flows

Autoregressive models are a form of normalizing flow

D
px) = | | p(xi|x))
=1

Autoregressive Models as Flows

Gaussian marginals
(X)) = A (%] p(x), 07(x)
P\ | X4 i | &) <i
Reparameterization trick:

x, = u(x_;) + o(x_;)z; where z. ~ A(0,1)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]

Autoregressive Models as Flows

(Affine) Autoregressive Flow:

f_l(z) = u(1(Z<z)) + o(1(Z<z))Z

X; — u(Xg;)

o(X ;)

Ji(X) =

Determinant:

det Df(x) = | [o7 (x)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]

Autoregressive Models as Flows

Sampling is sequential and slow

Density evaluation, ie, computing f(X), can be done in T2 35 4
parallel 5 8 7 8§

9 10 11 12

13 14 15 10

[Kingma et al NeurlPS 2016]

Autoregressive Models as Flows

(Affine) Inverse Autoregressive Flow:

JiX) = p(f (X)) + o(f (X)X,

z; — M(Z;)

o(Z;)

f7(@) =

Determinant:

det Df(x) = | | o(f.i(x)

[Kingma et al NeurlPS 2016;
Papamakarios et al NeurlPS 2017]

Multi-Scale Flows

A flow preserves dimensionality, but this is expensive in high dimensions
Just stop using subsets of dimensions

Practically, acts like dropping dimensions

[Dinh et al 2016]

Multi-Scale Flows

[Dinh et al 2016]

Multi-Scale Flows

Multi-scale flows are just a special coupling flow

f(x) = (x4, f(x?| 0))

- Important: must track “dropped” dimensions to preserve invertibility

Multi-Scale Flows

How do we split the dimensions for images”

height

width

-
4>

channel

Multi-Scale Flows

‘Squeeze” the spatial arrangement to get more channels

n n
nXnxXec — X — X 4c

1T 2 08 | 4

5 O € |5
9 10 11 12
13 14 15 10

Discrete-time Normalizing Flows

Continuous-time Normalizing Flows

FFJORD

ODEs as a flow

ek
p(z(t))

f(xX) =y, + | A y)dt with y, =X
0

INnverse:

0
fTl(@) =y, + | hty)dt with y, =z

[Grathwohl and Chen et al 2019]

FFJORD

Continuous change of variable

L[on
log px(x) = log pz(f(X)) + [I'r (a—y(f, yt)) dt
0

[Grathwohl and Chen et al 2019]

FFJORD

Hutchinson lrace Estimator

JlT (_@ (¢ y)) dt = [1 T—a (t,y,)edt
r . — _€N € € o €

[Grathwohl and Chen et al 2019]

FFJORD

Target Densit Target Densit Target Densit

Samples Vector Field Samples Vector Field Samples .\,/,eStQ[TF'eld
Sl LR 7/ O o} 77,
1 * m Ny g e / i S
§ 4 e AN 11
g -,—' - o .I"x" *_,__\ Py ey ;.). “-
v Dy - o - \
¥ v o i A o
3 Fr b {53 77 ZANNTS

[Grathwohl and Chen et al 2019]

Training PGMs with Maximum Likelihood

Normalizing Flows are a model of continuous data

Pixel intensities are typically discrete or quantized

1 bit
2 bit
3 bit
4 bit
S bit
8 bit

Training PGMs with Maximum Likelihood

ML learning of continuous models w/ discrete data can cause singularities

Really want to optimize - |
Probability Density of

Continuous Values

G- | G T aW
[0 1]D

PI’Ob bility of Probability Density of
Discrete Values Quantization Noise

Uniform Deqguantization

During training, dequantize the data (i.e., add noise)

Py(y) = J px(y + uw)py(u)du
[0,1]°

0 1 2 0 1 2
Discrete Dequanitzed

1 K
N — Z pX(y —l— | § | k) distribution distribution
K k=1

Simplest choice of pyj is uniform

Variational Deguantization

View py as a variational distribution and learn it

log Py(y) > [e S
0, 1]D pU(u‘Y)
SO m DDD_ AA
pu(ug|y) 0 0 1 2 0 1 2

[Hooaeboom et al 2020]

[Ho et al, 2019]

Common Flow Architectures for Images

NICE [Dinh et al, 2014]

RealNVP [Dinh et al, 2016]

Glow [Kingma and
Dhariwal, 2018]

Flow++ [Ho et al, 2019]

Transformations

Dequantization

Additive Coupling +

Diagonal Linear Unitorm
Affine Coupling + .
Channelwise Permutation Uniform
Affine Cqupllqg + Uniform
Channelwise Linear
MixLogCDF Coupling + Variational

Channelwise Linear

Multi-Scale

No

Yes

Yes

Yes

Conclusions

References

Dequantization

- Uria, B., Murray, |., & Larochelle, H. (2013). RNADE: The real-valued neural autoregressive density-estimator. In Advances in Neural Information Processing Systems (pp.
2175-2183).

- Theis, L., Oord, A. V. D., & Bethge, M. (2015). A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844.
- Hoogeboom, E., Cohen, T. S., & Tomczak, J. M. (2020). Learning Discrete Distributions by Dequantization. arXiv preprint arXiv:2001.11235.
Architectures
- Dinh, L., Krueger, D., & Bengio, Y. (2014). Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516.
- Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2016). Density estimation using real nvp. arXiv preprint arXiv:1605.08803.
- Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Advances in neural information processing systems (pp. 10215-10224).

- Ho, J., Chen, X., Srinivas, A., Duan, Y., & Abbeel, P. (2019). Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design.
In International Conference on Machine Learning (pp. 2722-2730).

Review Articles
- Kobyzey, |., Prince, S., & Brubaker, M. (2020). Normalizing flows: An introduction and review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence.

- Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2019). Normalizing flows for probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762.

