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Generative Modelling

¢ Deep Iearning SUCCess story
— Compute predictions y directly from complex data x
— Point estimates: y =~ y* = argmaxp(y | x), posteriors: pg(y | x) = p(y | x)
— Relies on discriminative / transductive machine learning
(does not first build a “model of the world” as traditional sciences do)

* Problem: discriminative models are hard to interpret, explain, validate

= Generative modelling

— Turn the problem around: learn the data generation likelihood p(x | y)
— More difficult: requires insight beyond mere prediction capability
— Solve the original task via Bayes theorem

p(x|y)p(y)

p(x)

p(y|x)=
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Generative Modelling as a
Basis for Interpretable Deep Learning

GANs (Variational) Autoencoders Normalizing Flows

(Generative Adversarial Networks) (Invertible Neural Networks, INNs)

maximum likelihood loss

X X
real real p(x) = p(z = f(x)) - |det VF]
data data
v Q2
. 22
C reconstruction — £
Discriminator “real” or “fake” loss uet! p(Z) —> 20 <« X = X Z
(cycle) loss % b
4 <5 real and gene- latent
rated data codes
v Encoder and Decoder
5("\ Generator 7 56'\ < Decoder 7 the are same network,
run forward / backward
generated random generated latent
data numbers data codes

u generation only lossy encoding / decoding lossless encoding / decoding
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Normalizing flows

Model complicated probabilities as bijective mappings of simple ones
 Example: transport (“flow”) from simple “sand pile” to target ,,sand piles”

transport big mass
to two small masses
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Normalizing flows

Model complicated probabilities as bijective mappings of simple ones
 Mathematically: target distribution is a push-forward of reference distribution

change of variables formula

p(x) = pz(z = f(x))|det Vf]|

push-forward of latent distribution

p(x) = gupz(2)

reference distribution

pz(z)

target distribution /transport map\

p(x) z = f(x)
x=g(z)=f""(2)
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Multiple Possibilities for Normalizing Flows

Autoregressive Models iIResNets RealNVP
(invertible residual networks)

Chain rule decomposition: Affine coupling layer:
Residual block:

Py xo) = | | pitae |2 . S 7 f /J /9 7\
triangular reparameterization:
Vi: x; = f;(z;,x<;) monoton. \/

L9 /

z=x+ f(x)
. is invertible when g
X =X+ — Z ”f(x)”LipShitZ <1 ;= [le _ |*1 - $2(x2) + t2(x2)
Z9 X9

: . inverse is equally efficient:
_ direction inefficient inverse direction is reasonably
NVETSE GITECHON INSHICien efficient (fixpoint or Newton X = [x1] = [(Zl i (ZZ))/S(ZZ)]

= use two complementary nets iterations)

¥ 10
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How do you make ResNets invertible
and why would you care?
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Recap: What is a ResNet?

* |nstead of modeling the transition from layer [to [ + 1

zi+1 = Fi(z))
model the difference (residual) between consecutive layers
zipi— 21 =Fi(z) & 2z =2z +F(z)
— Each layer (“residual block”) consists of a skip connection and a
parallel feed-forward transformation

— Advantage: no vanishing gradients even for very deep networks residual block

'i'h'\q I-'}'u‘

- ]
[} II r L]
[l ¥ L] r
' i i ;
— = = e el el e el = = = ==l |7 — e el e ] e e [y e l— —
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= slllag] |o e (o] leoflf o] lee{flean] Joa|li™ leldle! [wifiwe] (<o el L/l ab™ Isldieg] [l ] [0
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RevNets: Memory-efficient backpropagation

* Simple application of coupling layers: replace residual blocks with coupling blocks

— Do not store activations during the forward pass of training
— Recompute them on the fly during backpropagation, using the invertible architecture

Residual block becomes: Coupling block

X, Y,

2

M

=

13
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RevNets: Memory-efficient backpropagation

* Simple application of coupling layers: replace residual blocks with coupling blocks
— Do not store activations during the forward pass of training
— Recompute them on the fly during backpropagation, using the invertible architecture

Algorithm 1 Reversible Residual Block Backprop

I: function BLOCKREVERSE((y1,42). (V1. Ys))

2
3
4:
5

6:
7
8:

0:
10:

return (zy,x5) and (r1,75) and (wF, wg)

11: end function

v

X, ()Y,

o o forward pass

X, e Y,
X, - e Y,

o o inverse pass

14
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RevNets: Memory-efficient backpropagation

* Performance example: ResNet-101 vs. RevNet-104 on ImageNet

Dataset Version Params (M) Units Parameter Cost  Activation Cost
ImageNet ResNet-101 44.5 3-4-23-3 ~ 178MB ~ 5250MB
ImageNet RevNet-104 45.2 2-2-11-2 ~ 180MB ~ 1440MB

L. . ImageNet Top-1 Error (Single Crop)
* Very similar behavior: SN\ [ OrgnalResnetion
Top-1 classification error SRR N AL I SR S . S—
ResNet-101 RevNet-104 5 30.00%
23-01 % 23' 10% E 20.00% _:x‘..‘---
— Trade-off: greatly reduces memory consumption 0.00% 40 &9 80 160 130
No. epochs

for 2-4 times the compute

v
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Application: i-RIM 3D

* Allows training of very big nets: 3-dimensional convolutions, many layers
— fastMRI Challenge: MRI reconstruction from 8x less raw data

I-RIM 3D

Table 1: Comparison of memory consumption during training and testing.

RIM i-RIM 2D i-RIM 3D
Size Machine State (17, s) (CDHW) 130 4 1 k 480 x 320 64 x 1 k 480 x 320 64 x|32}x 480 x 320
Memory Machine State (7, s) (in GB) 0.079 0.039 1.258
Number of steps T’ 1/4/8 1/4/8 1/4/8
Network Depth (#layers) 5/ 2('/ 40 50/200/400 50/ 200‘@
Memory during Testing (in GB) 0.60 /0.65 /0.65 0.20/0.24/0.31 5.87/6.03 7 6.25
Memory during Training (in GB) 2.65/6.01 4 10.49 247/ 2.49E 2.51 11.51/11.76 4 11.89

16
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Making ResNets Invertible:
i-ResNets and Residual Flows

 (Can one create an invertible network while keeping the original ResNet architecture?
Xt1 = Xt + gg,(X¢t)

— How to ensure a bijective mapping?
— How to compute the inverse efficiently?
— How to perform maximum likelihood training?

0X¢+1

 The mapping is guaranteed to be bijective if > 0

0X¢
— Sufficient condition: Lipschitz bound on g, : Hggt (xt(l)) — 9o, (xt(z)) H <A ngl) — xt(z) H with4 <1

= Expressive power of each block is limited, need more blocks
= Blocks can be inverted using fixed point iterations or Newton iterations:

0
Xt = Xt+1
i+1 (
X — X¢41 — th(Xt)

17
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Making ResNets Invertible:
i-ResNets and Residual Flows

* How to achieve the Lipschitz bound?

— Concatenation is Lipschitz, when each transition is so Randomly initialise 7
— Linear/convolutional layers: normalize weight matrices {cWi/&?—, ifc/5; <1 fori=1tondo

= 17T+
. ~ < ] WZ — €Ty — W+W i
with ¢ < 1 and value ; < ||[W;]l Wi, else ond for

estimated by (one iteration of) power method o o Wl

|5’3n|2

— Activation function: Vx: |¢'(r)| < 1 is fulfilled by many ¢ (1), but training involves the of the
log-determinant of the Jacobian (the first derivative), i.e. the derivative ¢'' ()

— Many common ¢(r) have ¢'(r) = 1 = ¢ (r) = 0, i.e. suffer from
= Choose ¢p(r) = LipSwish(r) = 0.909 /(1 + exp(—f 1))

1.0 { = d¢/dx 1.0 | == dp/dx 1.0 = d¢/dx L g
d?¢/dx? d?¢/dx? d?¢/dx? \
0.5 1 0.5 1 0.5 1

0.0 1= 0.0 1 0.0 T

-0.5 -0.5 -0.5

Softplus ELU LipSwish

18
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Making ResNets Invertible:
i-ResNets and Residual Flows

 How to perform maximum likelihood training?

— Need the gradient of the log-determinant of the Jacobian
— Approximate via truncated power series or unbiased log density estimator

In

U N B S

— Very recent new possibility: use relative gradient (i.e. multiplicative instead of additive perturbation)
= Gradient update calculation reduces to matrix-vector products (try on your own risk :-)

Wy « W +y(Xe—1 (6 W) + DWW,

19
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Making ResNets Invertible:
iI-ResNets and Residual Flows

* Improvements of Residual Flow over i-ResNet apparent visually and in the numbers

Model MNIST  CIFAR-10 ImageNet 32x32 ImageNet 64 x64
Real NVP (Dinh et al., 2017) 1.06 3.49 4.28 3.98
Glow (Kingma and Dhariwal, 2018) 1.05 3.35 4.09 3.81
FFJORD (Grathwohl et al., 2019) 0.99 3.40 —_ —
Flow++ (Ho et al., 2019) — 3.29(3.09) — (3.86) — (3.69)
1-ResNet (Behrmann et al., 2019) 1.05 3.45 — —
Residual Flow 0.97 3.29 4.02 3.78
AN
r
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RealNVP:
Invertibility vie Coupling Layers
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Invertible Neural Networks (INNs) with Coupling Layers

Powerful generative models: RealNVP (,,non-volume preserving®) [pinh et al. 2017]
 Network is a sequence of affine coupling layers

* Each coupling layer splits its input x € R? into two halves x, x, € RP/?

* Upper half is subjected to an affine transformation = outputs z;, z, € RP/?

* Affine coefficients are computed by standard fully connected or convolutional networks

S, € IP%E/Z and t, € RP/2 from the lower half’s data

nested functions

. s,and t, are
Forward computation: z, = x s>(x,) + t,(x5), Z, = X : :
P 1= %1 O s2(x2) + t2(x7) 2 = X always executed in

Inverse computation: x; = (z; —t,(2,)) @ s,(z5), x, =2, the same direction

— O—F D—0O = unrestricted neural
Coupling layer $1/ /%/ \21 x1/ \s\‘_ \21 networks
x sy | |t z  x == s, | [t — ,
YV A N/

u >

22
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Deep INNs

* Concatenate many coupling layers

e Alternate with orthogonal layers Q

= Active (upper lane) and passive (lower lane) dimensions change in each layer
— Random permutations or projections are good enough, learning Q is not necessary

e Surprisingly powerful despite its simplicity
* Similar to autoencoder: forward mode = encoder, backward mode = decoder

— Encoder and decoder are merged into a single network
— Lossless encoding due to invertibility (no bottleneck)

23
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Training Deep INNs with Maximum Likelihood Loss

© O—&
; PRy
u S2 to S3 3 z
[/ e
J
Y
Parameters 6
Tractable data likelihood via change-of variables formula:  pg(x) = p;(z = fo(x)) - |det Vg (x)|
= Negative log-likelihood has especially simple form when p;(z) is standard normal
—log pg(x) = —log |detVfp(x)|
= — zlsum(log Sg,l(xlz))
u with sg ;(x;;) the multipliers at coupling layer [ (note: logdet Q = 0)
24
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Training Deep INNs with Maximum Likelihood Loss

© O—&
/J /J Z3
- S92 t2 S3 t3 2
[/ ave
/
Y
Parameters 6
Negative log-likelihood: —log pg(x) = glog 21 + % 1fo (O35 — X sum(log Sg,l(xlz))
= Train by minimizing the NLL objective over training set {x(i)}livzlz
A~ N : _ :
0 = argmax pg ((xO).,) = argmax[TiL, po(x©) = argmin T, ~ logpy(x®)
N
. )
= ar mlnE —z sum (logsp; | x )
v ey sum (l0g . (+1) 25
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Conditional Modeling with INNs

* In practice, we often need to model conditionals p(x | y) or p(y | x) rather than p(x)

 Example: Generative classification
— x are features, y are class labels
— determine posterior p(y | x) using Bayes rule

py|x) ~plx|y)p()
= |learn the likelihood p(x | y) via a conditional INN (specifically, an IB-INN)

 Example: Solving inverse problems

— x are hidden system parameters, y are observations of the system behavior
— determine the posterior p(x | y = ¥) to estimate parameters x from measured y
= learn p(x | y) using synthetic data from a simulation y = g(x; noise) of the forward process

26
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INN Architectures for Conditional Inference

Split latent space Latent mixture INN Conditional INN
training: (y,2) = fp(x) training: zZ = fp(x) training: z = fo(x;y)
s.t. p(z) =N(0,) s.t. p(z) = GMM(z;y) = X, N (uy, 2y) s.t. p(z) =N(0,I)
inference: sample z ~ NV (0,1) inference: sample z ~ NV (uy, 25) inference: sample z ~ N (0, 1)
compute x = f5 (9, 2) compute x = f; 1(2) compute x = f5 1 (z;9)
= x ~p(x | 9) = x ~p(x | 9) = x~px1)
Hidden Obser- : _ Observation
variables vation Jlidden Latent vector Hidden [ J Latent
) () — /A variables Yy vector
\X) \5\ ) '
4 = Z| = >4 Conditional INN AP
z )
p(x|y) p(2) p(z]y) Conditioned on y p(x\_|;/) g\)(_zg

v
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Conditional INN (cINN)

Conditional INN (cINN) adapts vanilla INN for conditional probabilities

* Reparametrize x ~ p(x | y) as with and forward process z = f(x;y) = ggt(x; y)
* Minimum log-likelihood loss becomes

R _ N1 : 2 J
6 = arg meln Zizl (E ”f@ (X(l); )“2 —_ zl sum (log So,1 (xl(zl); )))

simple change of coupling layer architecture:
feed y as additional input to subnets s, t
Observation

Hidden [

Latent y > Feature preprocessing (optional)
variables J

e
X1 Zq
x —| S9 to Z
X9 / / Zo
28
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CcINNs Turn Deterministic Networks
into Probabilistic Ones

Deterministic network = remove final layer(s) = attach cINN
y y y
e l 1 4 1 ) ( l )

- ] ]
!

p \ —p! diverse
c=h(y) AP R Conditional INN
. T / learned features outputs

x = h(y) single output

x~plxly) © x= g(z; ﬁ’(y)) with z ~ p(2)
~ M ¢
loss: h = argmin };(h(y;) — x;)*

/ loss: ﬁ,if’ = argmax ),; logp(x; | y;)
¥ ground truth: x*

29
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Example: Image-to-Image Translation

* Colorization as an inverse problem:
— forward process: turn color image to grayscale by :
taking the L-channel in Lab color space 2 =

— inverse problem: reconstruct realistic color channels
y=L = X=]|a,b]

-
4

—>

deterministic
P S : U-net

JRE))

----------------------

— deterministic network: single result

&7 " Condition

30
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Example: Image-to-Image Translation

* Colorization as an inverse problem:

— forward process: turn color image to grayscale by
taking the L-channel in Lab color space

— inverse problem: reconstruct realistic color channels

L = X=|ab]

y = X = |a, . ‘
[ ] L ]
()1 :
'_;j\ 6(3) ]
Qo n
= '
4—_;. L ]
= 4 ;
'f-o . n
; n
E (_‘(2) ]
O | ]
.: L ]
) = 4 b
j L ]
=] | .
S :
. | — '
& :
= A "
= M
Lﬁ n
| ]
"é C(U) []
'Q ]
s = :
L ]
L ]

A
----------------------

L% sy
27 Condition
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Example: Image-to-Image Translation

* Colorization as an inverse problem:

— forward process: turn color image to grayscale by
taking the L-channel in Lab color space

— inverse problem: reconstruct realistic color channels ... .. ...

-------------------

- +* L .
PaN ]
y=L = X=]|a,b] :
(')_ T‘C—;
LN —
% o [4 )
o CCB oo
—_

2 -~ A=
s § T <
50 = 5
~— \_ e
= (2) I 7 r ~
= c o CCB =
g = =
— = =
= 5 =
.= g ’ g
= = CcCB —
= = =
7 .

L .
| S
=] \ )
@ r =
o CCB =,
f—f

— cINN: diverse results
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Example: Image-to-Image Translation

* Colorization as an inverse problem: r ~ p(x| V)
— forward process: turn color image to grayscale by
taking the L-channel in Lab color space

— inverse problem: reconstruct realistic color channels
y=L = X=]|a,b]

— CINN: diverse results
— Quiz: Which color image is the ground-truth?

v
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Example: Image-to-Image Translation

* Colorization as an inverse problem: r ~ p(x| V)
— forward process: turn color image to grayscale by
taking the L-channel in Lab color space

— inverse problem: reconstruct realistic color channels
y=L = X=]|a,b]

— CINN: diverse results
— Quiz: Which color image is the ground-truth?

v
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cINN Architecture for Colorization

Four convolutional stacks (with four to six coupling layers)

Fully connected stack as backend (eight coupling layers)

Coupling layers separated by random orthogonal matrices to mix channels
Large feature detection network h (VGG), small conditioning networks h;

- ”
hy hy hy

64 w64 : i ' ; Y - i =
Y v Y oy o
-+ -+ -
a
2 x4 x4 ) ) 04 2 N

yvyyvryyvyvy

Multi-scale decomposition via 1] 2 AN
Haar-Wavelet down-sampling slal \{:]:) |
(standard max pooling not invertible)
cx2x2 average horizontal vertical diagonal l.ex1x1

35
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Colorization Examples

36
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Colorization: Meaningful Latent Manipulations

 Magnitude of latent vector encodes color saturation
— Linear interpolation from z = 0 outwards gradually increases saturation

37
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Colorization: Meaningful Latent Manipulations

e (Color transfer

— Encode color of input image i = [L;, a;, b;]: zi = f(x = [a;, bj; ' (y = L;))
— Reconstruct color for a different grayscale image L.: X; = [c’l},l;i] =g(z;; W(y =L,.)) with g=f"1
while keeping the latent code z;

E—

New condition L,

Outputs €
|Le, @i, by

¥ 38
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cINN for Image-to-Image Transformation

e Results: Conditiony Generated x Ground truth x
Day image Night images Night image

39
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cINN for Image-to-Image Transformation

Results:  Conditiony
Day image

Generated x
Night images

 Multi-scale features learned by the conditioning network:

— Level 1: edges and texture
— Level 2: foreground / background
— Level 3: populated areas (lights!)

Day image

Level 1

Ground truth x
Night image

Level 2

Level 3
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Solving Inverse Problems with Invertible Neural Networks

Ulirich Kéthe
Visual Learning Lab, Heidelberg University
joint work with Lynton Ardizzone, Stefan Radev, Jakob Kruse, Tim Adler,
Carsten Rother, Lena Maier-Hein

Tutorial ,,Normalizing Flows“ at CVPR 2021
June 2021
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HEIDELBERG
Towards an INN-based solution:
Linear Toy Example

* Forward process: given parameters x1,x, ~ N (0,1), observation y arises according to
y =x1 +x; = g(xq1, %)
(xq,x,) = g~ 1(9) for given observation J is

N [

— Classical regularization: minimum norm solution x; = x, == (disregards ambiguity!)
* Bayesian solution:
— Introduce latent variablez = x; —x, = (¥,2) = gaug(x1,x2) = (%1 + x2, %1 — x)

y+Z(t) y—z(t)

— Reparametrize posterior p(x,x, | y) as (xq,x;,) = gglllg(y, Z) = ( ) with z ~ NV (0,2)

2 12
* Given actual observation y, repeatfort € 1, ..., T:
) 5_ (1)
— Sample z(V ~ N(O 2) and compute x( ) =Y and x® =22
2 2 2

e Return x(t),x( ) as a sample from the Bayesian posterior p(x{, x5 | ¥
1 %2 ),y
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Endoscopes for minimally invasive surgery
* can be equipped with a multispectral camera

e tissue state x (e.g. blood oxygenation) affects
the observed color spectrum y

* Task: given spectrum, find posterior distribution of tissue state parameters

* Forward process s(x) is implemented by Monte Carlo simulation
‘ — TR T F().?() ‘ G A 0.13

0.65 [Eas S 0.12
§ , 0.11

- 0.60 S 7 | 0.10
- & - 0.09
- 0.08

| y e, | ' L 0.07
o 7’710 N - 0.06

- e " ! | e
0.40 - (.05

':‘\f
c) RGB image a) Median so, b) Est. uncertainty
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Application: Multispectral Endoscopy

Invert the forward process s(x) implemented by Monte Carlo simulation:
* training: INN learns [y, z] = fg(x) = S4y4(x) with p(2)~N (0, 1)
* inference: given observed spectrum §, sample {z;~p(z)}/L, and
: 1/~ M, :
compute posterior sample {xi = fo (¥, Zl-)}i=1 (independently for every pixel)

* determine mean and variance from {x;} - works especially well for blood oxygenation

X y
Perfusion
Oxygenation
Thickness
Scattering params N ‘ ‘ ]
Tissue parameters Monte-Carlo sim.  Spectral Apply illumination
of 3 layers of subsurface response of and camera model
scattering surface for discrete spectrum
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Application: Multispectral Endoscopy

1.00

Results
* INN performs well E 0.7
* not all parameters
. .o — 0.50
are identifiable
E ~ 0.25
~ 0,00
=
ﬁ - —0.25
<
- S § ) P — —0.50
é" —0.75

— T T T T = T | —— | - —1.00
1 i o nA n . il. A n s 1M (S in o C;’_}I‘rf_‘nlﬂtiﬁn
Oxygenation Volume fraction Mie scattering  Tissue thickness Anisotropy Matrix of x
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Application: Multispectral Endoscopy

1.00
Results
* INN performs well E 0.7
* not all parameters (unrecoverablel correlation}
are identifiable - S
Z -
E : ~ 0.25
* incorrect results :
: : : : ‘
for other methods N { too much }
— skewed distribut. =] i correlation
. o@m| | : s : - —0.25
appear symmetric =| | i / :
— non-identifiable © __isymmetric {overconfidencew
J H : N J .
parameters have .| [u \ 'ndePe”dencel
spurious mode 3 o
— correlation is a {
too Weak Or |'I'| = 1I .'1|."| ) |"|I1 |'|'| :.1|1, 1I1, -'1Iﬁ r'|I:: | 'II."u -'1I;i :.'1|1i | C;’_}I‘rf_‘nlﬂtif_jl‘l S
too StrOng Oxygenation Volume fraction Mie scattering  Tissue thickness Anisotropy Matrix of x
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Experimental Design for Multispectral Endoscopy

Analysis of posteriors: Which camera should be used?

3 spectral channels 8 spectral channels 27 spectral channels
| [
— 3 to 27 spectral channels ” | ﬂ J i ﬂ i
— Which gives reliable results u
at best price and usability? i | m
| 1 VA A WL

— posterior oxygen level histograms:

------- ground truth

H estimation 0.06
= camera with 8 B8 o 005 0.15
channels offers 06 T 2 g4 f¥e 3 /
best trade-off o4 X mutimoda £ 003 high § ™ good
bet . response & . variance a 005
etween price 02 | |
0.01
and accurac sy f fun
y '000 10 20 30 40 50 0'0030 40 50 60 70 80 0'0030 40 50 60 70 80

SO; [%] SO, [%] 503 [%]

\, .
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INN Architecture for Endoscopy Application

* Forward process: given tissue parameters x, spectrum y arises from MC simulation g
y=gx)
* Bayesian solution:
— Introduce collecting the information about x that got lostin y = g(x)
Y,Z = Jaug(x)
— Train INN for gayg(x) with p(z) = NV (0,I) and y L z, using synthetic training data from the simulation

— Inference for real observation y -

* Fort€l,..,T: Hi,d(li)‘in Obser-
— Sample z(® ~ (0, 1) Vafix ° Jaug(x) V%tij\n
— compute = x = g3iia(Vops, 2)
* Return {(x(t))}le as a sample from X
Bayesian posterior p(x | _
p(x|y) p(z)
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INN Architectures for Conditional Inference

Split latent space Latent mixture INN Conditional INN
training: (y,2) = fp(x) training: zZ = fp(x) training: z = fo(x;y)
s.t. p(z) =N(0,) s.t. p(z) = GMM(z;y) = X, N (uy, 2y) s.t. p(z) =N(0,I)
inference: sample z ~ NV (0,1) inference: sample z ~ NV (uy, 25) inference: sample z ~ N (0, 1)
compute x = f5 (9, 2) compute x = f; 1(2) compute x = f5 1 (z;9)
= x ~p(x | 9) = x ~p(x | 9) = x~px1)
Hidden Obser- : _ Observation
variables vation Jlidden Latent vector Hidden [ J Latent
) () — /A variables Yy vector
\X) \5\ ) '
4 = Z| = >4 Conditional INN AP
z )
p(x|y) p(2) p(z]y) Conditioned on y p(x\_|;/) g\)(_zg

v
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BayesFlow:
Model-Based Inverse Inference with cINNs

Model-based inverse inference:

— system with intrinsic parameters x (hidden) and observations y (measurable)

— good scientific
(e.g. differential equations, simulations)

— solve the

— usually no analytic solution

* ambiguous outcomes due to information loss from x to y ® must estimate posterior p(x | )
* simplest approach: manually adjust x until outcomes match y = neglects uncertainty
 traditional Bayesian inference: sampling methods (MCMC, HMC, ...) = very expensive

— standard ML methods are often not applicable

* lack of training data with known ground truth x*
* only point estimates, no posteriors (i.e. no diverse outputs)

— CINN can elegantly solve the Bayesian inverse problem
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BayesFlow:
Model-Based Inverse Inference with cINNs

cINNs make clever use of the known forward model to solve the inverse problem

* run cINN in forward mode for model-based training
— use known forward model to create synthetic training data = cINN becomes a fast surrogate
— train with diverse forward scenarios and noise = cINN learns the ambiguity and uncertainty
* run cINN in backward mode for inverse inference

\

— use actual observations ¥y as condition “Train forward,
N the {x; } are a sample of the .
« sample many latents { z;, ~ p(2) }i=; 3 e{si’;i osteriorp x| 9) get the inverse
* run cINN backwards { x; = g(zy; 9 }i=1 y P pAELY for free.”
synthetic data —— Observation forward training backward inference New observation y <+—— real data
'
Hidden variables [ y ] Latent vector Hidden variables [ y ] Sample z ~ p(z)
X Conditional INN Z X Conditional INN Z
p(x|y) z=f(xy) p(z) p(x|y) x=9z9)=f"zy) vz

v

51




UNIVERSITAT VISUAL LEARNING LAB — HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

HEIDELBERG

BayesFlow for Covid-19 Epidemiology

Epidemiology as a difficult inverse problem:
P . &Y . . . P Susceptlble healthy

 observations: time series of infected, recovered, deceased may get infected

(as of June 2020: 243 measurements = 3 observables over 81 days)
. A(t)(C + B

* 34 hidden parameters:
— infection rate A(t) Exposed symptom-free
— latent period 1/y cannot spread
— undetected fraction @ — y
— case fatality rate & 5 ! % undetected, can spread
— |\ Carrier —> af

e prior knowledge: a )
— SIR-type compartmental model (1 - a)y

— dates of government interventions

(ODE system similar to Lotka-Voterra) [
— sources of reporting errors

Dead 1 8d ( Infected ] (1 —d)uf RecoveredJ
DO ) e

ill, can spread healed, immune

v . :
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SR
i’ ‘A‘ 2

Forward Model: Epidemic Calculator

Transmission Dynamics
Intervention on | to decrease fransmiss

S— S P[II'I!I'J[II'ITI Inputs Basic Hrl|‘.-[|‘)[|[|:T|::-Il
day 100 | & '

Transmission Times
Num ber R

drag me ' 66.67% ' .

S w(curjf S Ro =220 | R =07 g '

d — N e | |

dE C+3I | v - g
dt ( "‘ : Clinical Dynamics

dC F . Mortality Statistics Recovery Times re 5
F E—(1—a)nC —afC

0
%:[1—&31}('—{1—&};{1—5{{1 §

% =afdC+(1-0)pl 5 ||HHHH‘““”"“'Iu I
|

E_r_ﬂdf
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BayesFlow for Epidemiology:
The Networks

* |Inference problem: observation sequence (IRD) = parameter posteriors

— Solve with BayesFlow network: cINN with statistical preprocessing networks for y
— Training: end-to-end optimization of maximum likelihood loss with 70000 simulations

N
Inference Network

Approximate [ Invertible Invertible Invertible ( Z)
Posterior L Block ) Block Block p

Convolutional:

* noise reduction
feature detection

Recurrent (LSTM): IRD [/~

* variable-length sequence '
to fixed size summary

Invertible (cINN): ‘ 4 g — it — gl — - —

time

» posterior inference

Epidemiological
Time Series

Multi-Convolution
\ Layers
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BayesFlow for Epidemiology:
Covid-19 Marginal Posteriors

Results: marginal posteriors for first wave in Germany (March —June 2020, 81 time steps)

* High fraction of undetected
infections:
63% (median), 79% (mode)

e Serial interval: 9-10 days

2.5 5.0 75 10.0 00 25 50 75 100

* High likelihood to transmit
disease before diagnosis

* time to recovery: - }
4.6 days (undetected infections)
11.3 days (diagnosed cases) |
(3.2 + 8.1 days before/after NN U
diagnosis)

0 100 200 300

14

Med =0.15

0.00 0.25 050 0.5 1.00

e often non-Gaussian behavior e i T TE—
0.25 0.50 0.75 1.00 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 Fractlon Of undetected InfeCtIOnS:

uniform prior = peaked posterior

Correspond well to clinical findings

¥ 55




UNIVERSITAT
HEIDELBERG

Strengths

Well-calibrated uncertainty quantification
* q% confidence intervals are hit = g% of the time

 much better than classical estimators (e.g. least
squares fitting, manual parameter tuning, ...)

Efficient backward operation = fast inference
* train once, predict often
* in contrast, MCMC runs from scratch for each y

* Bayesflow upfront training effort ® 10 — 100x
of single MCMC inference

= training effort amortizes quickly

analysis of German states with identical network

&
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Very diverse inverse problems
were solved with INNs/BayesFlow

blood oxygenation  experimental design outlier detection m/ /

- ﬂ |

. . . . BayesFlow
* Photo-acoustic imaging « Finance: - g
* Particle physics TR

* Astrophysics IS RS

1 1 o 17/10 X {' .':""-??' . ] 0’; 4’.".= ) v/ '."--':":.:' .- - 2 %y :-97..:&'.
* Environmental physics A b ST o ST 2

..' *.." "’” . age g : ) & ot i ‘-’ :o
B FI 00 02 04 06 08 10 000 025 050 075 100 125 150 17§ a:au _UI_D}_an_DE_DS_JJ_D&_ :_D? - __Dd 06 (IIE 10 12 ‘C 16
L[] [ [ ?- a {.10 O 2 ' 0 . ..’ .-‘ .'. (T}
* Cognitive Science ayesrlow  la e o R T L B P
o P wd et g
beets MCMC | " | " Iy A

* Inverse kinematics of robots o e e
 Mechanical engineering
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Guaranteed disentanglement with Nonlinear ICA
and Incompressible Flows

Ulirich Kéthe
Visual Learning Lab, Heidelberg University
joint work with Carsten Rother, Peter Sorrenson

Tutorial ,,Normalizing Flows“ at CVPR 2021
June 2021
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HEIDELBERG

Visual Learning
Lab Heidelberg
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INN Architectures for Conditional Inference

Split latent space Latent mixture INN Conditional INN
training: (y,2) = fp(x) training: zZ = fp(x) training: z = fo(x;y)
s.t. p(z) =N(0,) s.t. p(z) = GMM(z;y) = X, N (uy, 2y) s.t. p(z) =N(0,I)
inference: sample z ~ NV (0,1) inference: sample z ~ NV (uy, 25) inference: sample z ~ N (0, 1)
compute x = f5 (9, 2) compute x = f; 1(2) compute x = f5 1 (z;9)
= x ~p(x | 9) = x ~p(x | 9) = x~px1)
Hidden Obser- : _ Observation
variables vation Jlidden Latent vector Hidden [ J Latent
) () — /A variables Yy vector
\X) \5\ ) '
4 = Z| = >4 Conditional INN AP
z )
p(x|y) p(2) p(z]y) Conditioned on y p(x\_|;/) g\)(_zg

v
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Interpretable Latent Spaces with
Latent Mixture INNs (LM-INNs)

are a key to explainable machine learning

e Latent Mixture INNs are especially suitable for this task
— Variation of cINNs: condition y acts on the latent space, not on the function g

e cINN: x~px|ly) & z~p(2), x=g(z;y)
e LM-INN: x~px|y) & z~plzly), x=g9(2)
— Definep(z | y) as a instead of a single Gaussian
— Especially simple when y is a class label: learn one mixture component p(z | y = k) per label k

Hidden variables Latent vector
— o

X

\
\
\
\
\
\
\
\
\
\
\
\
\
\
| _/ \
\
\
\
\

¥ p(X | Y) p(z|y) Conditioned on y
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What is Disentanglement?

Train network so that each latent feature has a single interpretable effect

INPUT OUTPUT
Example: GLOW INN |
 Try your own face:
openai.com/blog/glow/
less more
( <€ >
, Smilin

changing the value of ?
a single latent feature Age ©
has a coordinated and < Narrow Eyes @
|n.tU|t|v.e effect on many E—— ®
pixels simultaneously

\_ Beard ?
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Disentanglement: Definition

e Definition by Bengio et al.:

— A disentangled representation has recovered the “ ”in a dataset

— Disentangled latent features separate different categories of information (e.g. identity, pose
and background) into independent degrees of freedom

* Disentangled representations are by humans and
for downstream tasks and transfer learning

 Methods so far empirically work well, but have no theoretical guarantees

 We apply the theory of to to derive such guarantees

v
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What is Disentanglement?

* Latent dimensions should have one and only one isolated effect on the data

=1

c‘ccnt

‘

: .7y vr rr
» . -» -
. - 3

[-VAE disentangles azimuth whereas VAE entangles it with other variables

|

\

v
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ID-GAN

* [nformation-Distillation Generative Adversarial Network is probably state-of-the-art

* Combine VAE encoder with conditional GAN generator

— Works well on large images
(CelebA-HQ: 1024x1024)

— GAN conditioned on -VAE
latent code

— Additional cycle constraint:
maximize mutual information
between latent codes of
real and fake images

azimuth

BG color
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LM-INNs for Disentanglement

separate content from noise

— number of content dimensions = intrinsic dimension of the dataset
— similar to autoencoder bottleneck, but intrinsic dimension is learned (not chosen as a hyperparameter)

disentangle content subspace into meaningful features

 do eigen decomposition PCA SPECTRUM ON MNIST * train LM-INN (y = class labels) SPECTRUM ON EMNIST
* sort features (eigenvectors) * sort features (latent variables) 1o
by energy (eigenvalues) o no knee by energy (latent variance) knee at 22 variables
e
Spectrum is usually smooth 1 Spectrum may have marked knee _ |
= no clear choice for
intrinsic dimension 10~

1|}—3 4
1|}—3 _

Y, e
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Recap: PCA (Principal Component Analysis)

* C(lassical method for unsupervised disentanglement with a linear transformation

— Finds uncorrelated basis vectors for multivariate Gaussian distributions
— Can be applied to non-Gaussian data, but cannot fully disentangle them

10 20 -

10 1

_]_ﬂ -

_]_ﬂ .
_zﬂ -

) ) ) I I ) I I ) ) ) ) )
| -75 -50 -25 00 25 50 75 -10 -5 0 5 10 15
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Recap: ICA (Independent Component Analysis)

* Roughly: Independent Component Analysis generalizes PCA to non-gaussian case
— Apply arbitrary invertible linear transformation to factorial

" 3 5 : : & 3 5 : :

Latent space Invertible linear
transformation

(non-gaussian, > Data space
u independent dimensions)
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Nonlinear ICA

* Replace the linear transformation with an invertible non-linear transformation

o

T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4

Invertible non-linear

Latent space _
transformation

>  Data space
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Non-linear ICA as a Disentanglement Method

* Disentanglement: undo the non-linear mixing of given data, recover latent space
* This in general impossible: non-linear mappings are t = ambiguity unresolvable

 Transformations 5
f(z)and f(g(2)) .
produce identical s f e
distributions '**—‘*— —

= non-linear ICAis SR |

u Latent space Alternative latent sp. Data space 69
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HEIDELBERG

ICA as a Disentanglement Method

* Fundamental insight: we need to transformations g in the latent space
— Constrain latent distributions by , €.8. by introducing a distribution
5 5 5
4 H 41 A
31 é 31 3 - RN ey > \‘\\\\\
2 4 g 21 24/ 4 7 T, S \\\- \\\
1 ..')'i'-',{: 11 1 ll/ l');r‘ - ..'.' ‘: _’\\\\ \\\v : \
‘."‘: o~ "I // vj -‘é o\ n“ “‘ \‘ |'|
°- : °- TEEed) ) |
\ \ N LS T N L] 2 !
-2 -2 1 -2 \\\ \\\\ B i % ,,II
=3 - - T T T - - -3 T T T - - - T -3 \.\ ?\"T ____ ,/ £z r :
-3 -2 -1 0 1 2 3 - 5 -3 -2 -1 0 1 2 3 - 5 -3 -2 -1 0 1 2 3 4 5
I\ J
Invertible nonlinear A
Latent space (transformation S Alternative data spaces
(mixture with (different solutions place the

independent dimensions) colors differently) 70
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LM-INNs for Disentanglement

LM-INNs fulfill the theoretical assumptions of

Important negative result [Hyvarinen & Pajunen 1999]:

General non-linear transformations are too powerful — can fit everything

Recent positive results: non-linear disentanglement becomes identifiable with
additional conditioning information, e.g.

— Temporal relations [Hyvarinen & Morioka 2017, Hyvarinen, Sasaki, Turner 2018]
— Multi-modal observations [Gresele, Rubenstein, Mehrjou, Locatello, Scholkopf 2020]
— Class labels [our work]

(generalizing this is a hot research topic).
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General Incompressible-flow Networks (GIN)

* Modification of Real NVP coupling block architecture
— Constrain the Jacobian to determinant 1

— This differs from additive coupling (NICE): in some dimensions, when this is
compensated for by a counter change in the remaining dimensions

d
= Zs(a:i):O = log|J| =0
input output =1
d—1 ;M
s(xq) = — s(x;) or s(x;) « s(x;) — y ZS(%)
i=1 i=1

* Advantage:

— Total “Variance” is preserved
of latent variables can be sorted and

v
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Artificial Data Experiments

* True generative process:
— 5 Gaussian mixture components (“class labels”), 2 meaningful dimensions, 8 noise dimensions
— Mapped to 10-dimensional data space using a random non-linear transformation

 Task of the INN:

— Determine that intrinsic dimension is 2
— Recover the GMM within the meaningful dimensions, given the class labels

OBSERVED DATA
GROUND TRUTH (PROJECTION) RECONSTRUCTION SPECTRUM

Nonlinear mixing GIN trained with Intrinsic dimension
class-conditional NLL evidenced by knee
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Artificial Data Experiments

* [Intuition: works, because all clusters must be disentangled simultaneously

— Breaks down, when clusters have no overlap: model transforms these clusters independently

OBSERVED DATA
GROUND TRUTH (PROJECTION) RECONSTRUCTION SPECTRUM

— Can be caused by lack
of training data:

knee is lost

10% data points

OBSERVED DATA

GROUND TRUTH (PROJECTION) SPECTRUM

10° data points
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B~

LM-INNs for Disentanglement

* |dentify of complicated data
distributions, which intuitively explain variability

e Express complex/coordinated changes of the data
as a of simple changes in the factors

* Example: EMNIST KXY AN EYE;

handwritten digits: / A5000b 64
latent factors are O} 636370 angle )
charact(.er.istics of 794 6L 2R
handwriting styles 3439 ¢q12¢
Qgd 65737 +
' 9 /56§08 .
26858894 penW|dth)
704 +¢3543
6510 b7 23




Var. 8: lower width

N
G
o
‘©
i
r ¢
(Vs X
— S
> -
LL) ~
@) ™
b= ~
-
c 5 ©
O = &
© 3 =
J o S
o . -
Q. = =
e = 3
(V)]
D
4
2 o S S
O O et >
© O 4 ©
U c c
c @) 2._PL»
> — O Q
— © < rOr_I
c Q — 7:@
v O S o0
Y o0 c
(© c @© - =
— — = C c O
o O = 2 ‘T ©
sE 23 £
— @)
rrw rrb o C
[ ) [ ) [ )




Application to EMNIST
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IB-INNs — Building (more) interpretable models
with INN-based generative classifiers

Ulirich Kéthe
Visual Learning Lab, Heidelberg University
joint work with Lynton Ardizzone, Radek Mackowiak, Jakob Kruse, Carsten Rother

Tutorial ,Normalizing Flows“ at CVPR 2021

June 2021
> UNIVERSITAT Y~ .
|) HEIDELBERG Visual Learnlng
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IB-INNs: Generative Classifiers

 What is a generative classifier (GC)?
— Classifier: given image x, predict label y of most salient object

— A discriminative classifier (DC): learns the class p(y | x)
— Generative classifier: instead learns the p(x|y)
and computes the posterior indirectly by ;
p(z | y)p(y)

Py | o) = 2.y P | Y)p(y)

* GCs promise to foster

— uncertainty quantification, outlier detection, robustness against distribution shifts
— discovery of meaningful features
— but: predictive performance of GCs used to be unconvincing = discriminative classifiers (DCs) prevailed

* Old idea, but so far discriminative classifiers have much better performance

v
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The Information Bottleneck Principle

* Naively trained generative classifiers: accuracy in comparison to DCs
— Tend to overfit
* [nformation bottleneck principle overcomes this problem

— Introduce latent representation z, where all information flows through —

— Latent variables z should be: (= good classification)
(= no overfitting)

* Minimize Information Bottleneck (IB) loss

Lig = I(z,2) — B 1(y,2)

Generative aspect 1 Discriminative aspect
(minimize spurious Trade-off parameter (maximize information
information about x) about class labels)

with Mutual Information (MI)  I(y, z) = Dkr, (p(y, z)||p(y)p(z))

v
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IB-INNs: Generative Classifiers

* Learningp(x|y)isa problem
— Normalizing flows are good at density estimation .
— We actually model p(z | y) as a latent GMM
and train an INN to transform this into p(x | y) X Bayes Rule
= this is a latent mixture INN
— The model can be trained using the —
INPUT

1(x; () 1(y; f(x)
* Problem: INNs are lossless encoders — where is the bottleneck?
— Train the INN mapping z = f(x) with
Lig = Ll_r}g I(X; Ze = f(x,)) - B I(y; Ze = f(x’))
— Intuitively: noise ensures lossy encoding = prevents divergence of I(x; Z, = f(x’))
— Surprisingly, mutual information I (x; z.) reduces to the usual maximum likelihood loss

[(x; z¢) = Epo),pce) [—logp (x + €)] = Epo),pe) [—logpz (z¢) — logdetVf ]

v
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IB-INN: Training an LM-INN as a Generative Classifier

LM-INN can approximate the IB loss arbitrarily well =

— Successfully trained on CIFAR-10 (10 classes, 322images) True: bow tie True: limpkin True: Rottweler
and ImageNet (1000 classes, 2242 images) = | o

— Depending on 3, the IB-INN emphasizes generative or
discriminative performance
« at f = 1, bits/dimension (=generative performance)
comparable to a purely generative model

Bits/dim. (1) | Acc. (%) (1)

3
1 4.34 67.30
* at f =32, test accuracy (=discriminative performance) o 1A =
comparable to a discriminative ResNet 4 ].79 73 69
* ImageNet: 8 12.35] 74.59
16 17.43 75.54
32 22.68 76.18
00 47.01 76.27
0 2.59 —
ResNet — 77.40
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IB-INNs:
Benefits of GC (1): Interpretability

* Class separation improves as (= importance of I(y; z)) increases
— CIFAR-10 examples (PCA projection of latent space)

B =0.02 B=12 B = 18.05 B=85.65

airplanes cars birds cats deer dogs frogs horses ships trucks
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IB-INNs:
Benefits of GC (1): Interpretability

True: bow tie (2(-1155(1"’“' “") (2('1215‘\(5““) (2(-1;\55(-"”“8]?’55)

 Heatmaps for attention area of the
most probable classes

— Back-project relevant latent features
to image space regions

— Thanks to invertibility, the heat-maps
represent the true decision process,
not a post-hoc explanation

CJ(-[ilgs(lilll[)kill) C}cliws(\'ultnru) (2(.[&%(1)3.](1 vnglv)

(2‘.1(“5(Rult\\'uilvr) C?dms(Appvnzvllur) (2(.1"_,.5 (su('('vr lmll)
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[ ]

Benefits of GC (1): Interpretability

e Pairwise distances between class centers in z-space reflect class similarity and confidence

—_ I m age N et exa m ples | True: groenendael " True: missile
7.3 7.3 -
| correct with ) o) 4 | ambiguous w/
. 5.6 =1 5.6 = g
tiger high confidence K ! high confidence
3.9 4 3.9 -
egyptian cat 211 o
0.4 - 0.4 -
|
: 91.5% 1.72%
t d.b by 1.3 \\ ; /! 1.3
\\ //
3.0 T T-——’n T T T T 3.0 T T T T T T T
—4 -3 -2 -1 0 1 2 3 4 —4 -3 -2 -1 0 1 2 3 4

tiger cat

" True: refrigerator v True: miniature poodle
arctic fox »s4 multiple objects s ]
.| with medium .o incorrect with _
0.6 = . o, . Rﬂ""
grey fox confidence low confidence N
3.0 3.9
red fox a . 1 I S
/ \ / \
0.4 ,’ refrigerator siamese cat 0.4 ,I arabian camel \l, seat_belt
1 L 1 - T ®
1{ * f \ 28.2% N 27.8% \ 10.3% ! 8.63%
1t Tox ] N / asd N /
\ /7 5\ /
\\ - o 3 b ~ - il s
-3.0 T T T T T T T -3.0 T T T T T T T

87



UNIVERSITAT
HEIDELBERG

IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

Generative Classifier

 OQutliers have low likelihood for every class p(Image | Class)

— Intuitively: can separate in-/outliers using

) s
threshold on likelihood 6.3 6.1 0.014 0.017
Cat Dog Cat Dog

— Many interesting open questions

* Which outlier scores does IB-INN support?
(e.g. typicality tests, WAIC, ...)

* What does it mean for an instance to be an
outlier in high dimensions?
(much of our intuition is based on low
dimensional case and thus misleading)

* Which latent re-parameterizations are
sensitive for which type of outlier?
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| IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

e Qutliers have low likelihood for every class
— Artificial outliers: scrambled colors (CIFAR-10) Adversarial examples (ImageNet)

— .
z
&
)
|
=

Minimal perturbations to get
confident incorrect predictions

10000 A .
97% outlier
8000 - detection accur

Ladv

6000 -

4000 A

2000 A

>
]
0
©
0
o
—
S
00
ke
ge
(]
c
—
©
)
—

= IB-INN improves adversarial robustness,
Inlier images (test set) Same images, scrambled colors but does not in itself solve the problem
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IB-INNs:
Benefits of GC (3): Uncertainty Calibration

e Calibration = consistency of confidence vs. actual performance

— If classifier is 90% confident about class label, it should be right 90% of the time, neither less nor more
— Problematic for discriminative classifiers [Guo et al. 2017] — IB-INNs are much better calibrated

1.0 1.0
DC: ResNet-18 !! GC: IB-INN =1
(CIFAR-10)  **] 1 (CIFAR-10)  °#-
;‘)’ 0.6 - I ' g 0.6 -
S 0.4 v 504-
0.2 0.2
00 T T ! ! 00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence
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Summary

Public code of our FrEIA library: https://github.com/VLL-HD/FrEIA

* INNs are very good density estimators:

— Not yet quite as good as GANs (as trained by the Big Guys with 300 GPUs in parallel ©)
— But with much stronger mathematical interpretation and guarantees

 Three main approaches to incorporate additional information

— Conditional INN: learn p,(z = finn(Xy))
— Latent mixture INN: learn p,(z = finnX) | Y)
— Augmented latent space INN: learn p,, ,(¥,2 = finn(X))

— We get the full posterior p(x | y), both exactly and through samples

e Future work:

— Improve architectures and training
— Strengthen validation and mathematical guarantees
— Apply to various problems in natural and life sciences

¥ — Better incorporation of prior knowledge from the application domain
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