
VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Tutorial “Normalizing Flows”
Part 2

Ullrich Köthe

Visual Learning Lab, Heidelberg University

CVPR 2021, June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap:
How do normalizing flows work?

How do they differ from other generative models?

Ullrich Köthe

Visual Learning Lab, Heidelberg University

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling

• Deep learning success story
– Compute predictions 𝑦 directly from complex data 𝑥

– Point estimates: ො𝑦 ≈ 𝑦∗ = argmax 𝑝 𝑦 𝑥), posteriors: Ƹ𝑝𝜃 𝑦 𝑥) ≈ 𝑝 𝑦 𝑥)

– Relies on discriminative / transductive machine learning
(does not first build a “model of the world” as traditional sciences do)

• Problem: discriminative models are hard to interpret, explain, validate

 Generative modelling
– Turn the problem around: learn the data generation likelihood 𝑝 𝑥 𝑦)

– More difficult: requires insight beyond mere prediction capability

– Solve the original task via Bayes theorem

𝑝 𝑦 𝑥) =
𝑝 𝑥 𝑦) 𝑝(𝑦)

𝑝(𝑥)

Feynman: “What I cannot create, I do not understand.”
3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Generative Modelling as a
Basis for Interpretable Deep Learning

GANs
(Generative Adversarial Networks)

4

(Variational) Autoencoders Normalizing Flows
(Invertible Neural Networks, INNs)

Generator 𝑧ො𝑥
random
numbers

generated
data

Discriminator

𝑥
real
data

“real” or “fake” loss INN𝑥 ≡ ො𝑥 𝑧
latent
codes

real and gene-
rated data

𝑝 𝑥 = 𝑝 𝑧 = 𝑓 𝑥 ⋅ det ∇𝑓

maximum likelihood loss

Encoder and Decoder
the are same network,
run forward / backward

Decoder 𝑧ො𝑥
latent
codes

generated
data

𝑥
real
data

reconstruction
(cycle) loss

Encoder

𝑝(𝑧)

re
fe

re
n

ce
d

is
tr

ib
. l

o
ss

generation only lossy encoding / decoding lossless encoding / decoding

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

5

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

6

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

7

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Example: transport (“flow”) from simple “sand pile” to target „sand piles“

8

transport big mass
to two small masses

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Normalizing flows

Model complicated probabilities as bijective mappings of simple ones

• Mathematically: target distribution is a push-forward of reference distribution

9

𝑝𝑍(𝑧)

reference distribution

𝑝(𝑥)

target distribution

𝑧 = 𝑓 𝑥
𝑥 = 𝑔 𝑧 = 𝑓−1(𝑧)

transport map

𝑝 𝑥 = 𝑝𝑍 𝑧 = 𝑓 𝑥 det ∇𝑓

change of variables formula

𝑝 𝑥 = 𝑔#𝑝𝑍(𝑧)

push-forward of latent distribution

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Multiple Possibilities for Normalizing Flows

Autoregressive Models

Chain rule decomposition:

𝑝 𝑥1, … , 𝑥𝐷 =ෑ
𝑖
𝑝𝑖 𝑥𝑖 𝑥<𝑖)

triangular reparameterization:

∀𝑖: 𝑥𝑖 = 𝑓𝑖(𝑧𝑖 , 𝑥<𝑖) monoton.

inverse direction inefficient

 use two complementary nets

10

iResNets
(invertible residual networks)

Residual block:

𝑧 = 𝑥 + 𝑓(𝑥)

is invertible when

𝑓 𝑥 Lipshitz < 1

inverse direction is reasonably
efficient (fixpoint or Newton
iterations)

RealNVP

Affine coupling layer:

𝑧 =
𝑧1
𝑧2

=
𝑥1 ⋅ 𝑠2 𝑥2 + 𝑡2(𝑥2)

𝑥2
inverse is equally efficient:

𝑥 =
𝑥1
𝑥2

=
(𝑧1 − 𝑡2 𝑧2)/𝑠(𝑧2)

𝑧2

example: parallel WaveNet example: Residual Flow Net example: GLOW

𝑧𝑥 ≡ ො𝑥

𝑥 𝑧

𝑓(𝑥) 𝑧

𝑧2

𝑧1

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

How do you make ResNets invertible
and why would you care?

Ullrich Köthe

Visual Learning Lab, Heidelberg University

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap: What is a ResNet?

• Instead of modeling the transition from layer 𝑙 to 𝑙 + 1
𝑧𝑙+1 = ℱ𝑙 𝑧𝑙

model the difference (residual) between consecutive layers
𝑧𝑙+1 − 𝑧𝑙 = ℱ𝑙 𝑧𝑙 ⟺ 𝑧𝑙+1 = 𝑧𝑙 + ℱ𝑙 𝑧𝑙

– Each layer (“residual block”) consists of a skip connection and a
parallel feed-forward transformation

– Advantage: no vanishing gradients even for very deep networks

12

residual block

He et al. “Deep residual learning for image recognition”, CVPR 2016.

ResNet-34

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Simple application of coupling layers: replace residual blocks with coupling blocks
– Do not store activations during the forward pass of training

– Recompute them on the fly during backpropagation, using the invertible architecture

13

Residual block Coupling block



becomes:

Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Simple application of coupling layers: replace residual blocks with coupling blocks
– Do not store activations during the forward pass of training

– Recompute them on the fly during backpropagation, using the invertible architecture

14

inverse pass

“isolated”
autodiffs

of G and F

forward pass

inverse pass

Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RevNets: Memory-efficient backpropagation

• Performance example: ResNet-101 vs. RevNet-104 on ImageNet

• Very similar behavior:

– Trade-off: greatly reduces memory consumption
for 2-4 times the compute

15Gomez & Ren et al. “The Reversible Residual Network: Backpropagation Without Storing Activations”, NIPS 2017.

Top-1 classification error

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: i-RIM 3D

• Allows training of very big nets: 3-dimensional convolutions, many layers
– fastMRI Challenge: MRI reconstruction from 8x less raw data

16Putzky & Welling “Invert to Learn to Invert”, NeurIPS 2019.

Target RIM i-RIM i-RIM 3D

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• Can one create an invertible network while keeping the original ResNet architecture?

– How to ensure a bijective mapping?

– How to compute the inverse efficiently?

– How to perform maximum likelihood training?

• The mapping is guaranteed to be bijective if
𝜕𝐱𝑡+1

𝜕𝐱𝑡
> 0

– Sufficient condition: Lipschitz bound on 𝑔𝜃𝑡: 𝑔𝜃𝑡 𝑥𝑡
1

− 𝑔𝜃𝑡 𝑥𝑡
2

≤ 𝜆 𝑥𝑡
1
− 𝑥𝑡

2
with 𝜆 < 1

Expressive power of each block is limited, need more blocks

Blocks can be inverted using fixed point iterations or Newton iterations:

17

forward pass

backward pass

Behrmann et al. “Invertible Residual Networks”, ICML 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• How to achieve the Lipschitz bound?
– Concatenation is Lipschitz, when each transition is so

– Linear/convolutional layers: normalize weight matrices
with 𝑐 < 1 and largest singular value ෥𝜎𝑖 ≤ 𝑊𝑖 2

estimated by (one iteration of) power method

– Activation function: ∀𝑥: 𝜙′ 𝑟 ≤ 1 is fulfilled by many 𝜙(𝑟), but training involves the gradient of the
log-determinant of the Jacobian (the first derivative), i.e. the second derivative 𝜙′′ 𝑟

– Many common 𝜙(𝑟) have 𝜙′ 𝑟 ≈ 1 ⇒ 𝜙′′ 𝑟 ≈ 0, i.e. suffer from vanishing gradients

 Choose 𝝓 𝒓 = LipSwish 𝒓 = 𝟎. 𝟗𝟎𝟗 𝒓/(𝟏 + 𝐞𝐱𝐩 −𝜷 𝐫)

18
Gouk et al. “Regularisation of Neural Networks by Enforcing Lipschitz Continuity”, arXiv 2018.

Chen et al. “Residual Flows for Invertible Generative Modeling”, NeurIPS 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• How to perform maximum likelihood training?
– Need the gradient of the log-determinant of the Jacobian

– Approximate via truncated power series or unbiased log density estimator

– Very recent new possibility: use relative gradient (i.e. multiplicative instead of additive perturbation)

Gradient update calculation reduces to matrix-vector products (try on your own risk :-)

𝑊𝑡 ← 𝑊𝑡 + 𝛾 𝐱𝑡−1 𝛿𝑡
𝑇𝑊𝑡

𝑇 + 𝕀 𝑊𝑡

19

≈

Behrmann et al. “Invertible Residual Networks”. ICML 2019. Chen et al. “Residual Flows for Invertible Generative Modelling”, NeurIPS 2019.

Gresele et al. “Relative gradient optimization of the Jacobian term”, INNF+ 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Making ResNets Invertible:
i-ResNets and Residual Flows

• Improvements of Residual Flow over i-ResNet apparent visually and in the numbers

20Chen et al. “Residual Flows for Invertible Generative Modeling”, NeurIPS 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

RealNVP:
Invertibility vie Coupling Layers

Ullrich Köthe

Visual Learning Lab, Heidelberg University

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Invertible Neural Networks (INNs) with Coupling Layers

22

Coupling layer

𝑧

𝑧

𝑧

⊘ −
𝑥1

𝑥2

𝑧1

𝑧2

𝑥 𝑧𝑠2 𝑡2

nested functions
s2 and t2 are

always executed in
the same direction
 unrestricted neural

networks

Powerful generative models: RealNVP („non-volume preserving“) [Dinh et al. 2017]

• Network is a sequence of affine coupling layers

• Each coupling layer splits its input 𝑥 ∈ ℝ𝐷 into two halves 𝑥1, 𝑥2 ∈ ℝ𝐷/2

• Upper half is subjected to an affine transformation  outputs 𝑧1, 𝑧2 ∈ ℝ𝐷/2

• Affine coefficients are computed by standard fully connected or convolutional networks

𝑠2 ∈ ℝ+
𝐷/2

and 𝑡2 ∈ ℝ𝐷/2 from the lower half’s data

Forward computation: 𝑧1 = 𝑥1 ⊙ 𝑠2 𝑥2 + 𝑡2 𝑥2 , 𝑧2 = 𝑥2

Inverse computation: 𝑥1 = 𝑧1 − 𝑡2(𝑧2) ⊘ 𝑠2 𝑧2 , 𝑥2 = 𝑧2

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Deep INNs

• Concatenate many coupling layers

• Alternate with orthogonal layers 𝑄
Active (upper lane) and passive (lower lane) dimensions change in each layer

– Random permutations or projections are good enough, learning Q is not necessary

• Surprisingly powerful despite its simplicity

• Similar to autoencoder: forward mode = encoder, backward mode = decoder
– Encoder and decoder are merged into a single network

– Lossless encoding due to invertibility (no bottleneck)

23

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

3

3

3 3

3

3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Training Deep INNs with Maximum Likelihood Loss

Parameters 𝜃

Tractable data likelihood via change-of variables formula: 𝑝𝜃 𝑥 = 𝑝𝑍 𝑧 = 𝑓𝜃(𝑥) ⋅ det ∇𝑓𝜃(𝑥)

 Negative log-likelihood has especially simple form when 𝑝𝑍(𝑧) is standard normal

−log 𝑝𝜃 𝑥 = − log 𝑝𝑍 𝑧 = 𝑓𝜃 𝑥 − log det ∇𝑓𝜃 𝑥

=
𝐷

2
log 2𝜋 +

1

2
𝑓𝜃(𝑥) 2

2 −෍
𝑙
sum log 𝑠𝜃,𝑙(𝑥𝑙2)

with 𝑠𝜃,𝑙(𝑥𝑙2) the multipliers at coupling layer 𝑙 (note: log det 𝑄 = 0)
24

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

3

3

3 3

3

3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Training Deep INNs with Maximum Likelihood Loss

Parameters 𝜃

Negative log-likelihood: −log 𝑝𝜃 𝑥 =
𝐷

2
log 2𝜋 +

1

2
𝑓𝜃(𝑥) 2

2 − σ𝑙 sum log 𝑠𝜃,𝑙(𝑥𝑙2)

 Train by minimizing the NLL objective over training set 𝑥(𝑖)
𝑖=1

𝑁
:

෠𝜃 = argmax
𝜃

𝑝𝜃 𝑥(𝑖)
𝑖=1

𝑁
= argmax

𝜃
∏𝑖=1
𝑁 𝑝𝜃 𝑥(𝑖) = argmin

𝜃
σ𝑖=1
𝑁 − log 𝑝𝜃 𝑥(𝑖)

= argmin
𝜃

෍
𝑖=1

𝑁 1

2
𝑓𝜃 𝑥(𝑖)

2

2
−෍

𝑙
sum log 𝑠𝜃,𝑙 𝑥𝑙2

(𝑖)

25

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

𝑧

3

3

3 3

3

3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Conditional Modeling with INNs

• In practice, we often need to model conditionals 𝑝 𝑥 𝑦) or 𝑝 𝑦 𝑥) rather than 𝑝(𝑥)

• Example: Generative classification
– 𝑥 are features, 𝑦 are class labels

– determine posterior 𝑝 𝑦 𝑥) using Bayes rule
𝑝 𝑦 𝑥) ∼ 𝑝 𝑥 𝑦) 𝑝(𝑦)

 learn the likelihood 𝑝 𝑥 𝑦) via a conditional INN (specifically, an IB-INN)

• Example: Solving inverse problems
– 𝑥 are hidden system parameters, 𝑦 are observations of the system behavior

– determine the posterior 𝑝 𝑥 𝑦 = ො𝑦) to estimate parameters 𝑥 from measured ො𝑦

 learn 𝑝 𝑥 𝑦) using synthetic data from a simulation 𝑦 = 𝑔(𝑥; noise) of the forward process

26

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architectures for Conditional Inference

Split latent space

training: 𝑦, 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(ො𝑦, 𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

27

Latent mixture INN

training: 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = GMM 𝑧; 𝑦 = σ𝑦𝒩(𝜇𝑦, Σ𝑦)

inference: sample 𝑧 ~𝒩(𝜇 ො𝑦, 𝛴ො𝑦)

compute 𝑥 = 𝑓𝜃
−1(𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

Conditional INN

training: 𝑧 = 𝑓𝜃(𝑥; 𝑦)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

historically first classification, disentanglement inverse inference

=

Conditioned on 𝑦
𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Conditional INN (cINN)

Conditional INN (cINN) adapts vanilla INN for conditional probabilities

• Reparametrize 𝑥 ∼ 𝑝 𝑥 𝑦) as 𝑥 = 𝑔𝜃(𝑧; 𝑦) with 𝑧 ∼ 𝑝𝑍(𝑧) and forward process 𝑧 = 𝑓𝜃 𝑥; 𝑦 = 𝑔𝜃
−1(𝑥; 𝑦)

• Minimum log-likelihood loss becomes

෠𝜃 = argmin
𝜃

෍
𝑖=1

𝑁 1

2
𝑓𝜃 𝑥(𝑖); 𝑦(𝑖)

2

2
−෍

𝑙
sum log 𝑠𝜃,𝑙 𝑥𝑙2

(𝑖)
; 𝑦(𝑖)

28Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

simple change of coupling layer architecture:
feed 𝑦 as additional input to subnets 𝑠, 𝑡

𝑧

𝑧2

𝑧1

𝑦 Feature preprocessing (optional)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINNs Turn Deterministic Networks
into Probabilistic Ones

Deterministic network

29

𝑦

𝑐 = ℎ′(𝑦)

learned features

𝑦

𝑥 = ෠ℎ(𝑦)

ground truth: 𝑥∗

loss: ෠ℎ = argminσ𝑖 ℎ(𝑦𝑖) − 𝑥𝑖
∗ 2

single output

𝑦

with 𝑧 ∼ 𝑝(𝑧)

loss: ො𝑔, ෡ℎ′ = argmaxσ𝑖 log 𝑝 𝑥𝑖
∗ 𝑦𝑖)

𝑥 ∼ 𝑝 𝑥 𝑦) ⇔ 𝑥 = ො𝑔 𝑧; ෠ℎ′(𝑦)

diverse
outputs

Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

 remove final layer(s)  attach cINN

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

𝑦

Example: Image-to-Image Translation

• Colorization as an inverse problem:
– forward process: turn color image to grayscale by

taking the L-channel in Lab color space

– inverse problem: reconstruct realistic color channels
𝑦 = 𝐿 ⇒ ො𝑥 = 𝑎, 𝑏

– deterministic network: single result

30

𝑦, ො𝑥

deterministic
U-net

Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

𝑦

Example: Image-to-Image Translation

• Colorization as an inverse problem:
– forward process: turn color image to grayscale by

taking the L-channel in Lab color space

– inverse problem: reconstruct realistic color channels
𝑦 = 𝐿 ⇒ ො𝑥 = 𝑎, 𝑏

31Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

𝑦

Example: Image-to-Image Translation

• Colorization as an inverse problem:
– forward process: turn color image to grayscale by

taking the L-channel in Lab color space

– inverse problem: reconstruct realistic color channels
𝑦 = 𝐿 ⇒ ො𝑥 = 𝑎, 𝑏

– cINN: diverse results

32

𝑝 𝑥 𝑦)

Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ො𝑝 𝑥 𝑦)

𝑦

Example: Image-to-Image Translation

33

𝑧 ∼ 𝑝𝑧(𝑧)

• Colorization as an inverse problem:
– forward process: turn color image to grayscale by

taking the L-channel in Lab color space

– inverse problem: reconstruct realistic color channels
𝑦 = 𝐿 ⇒ ො𝑥 = 𝑎, 𝑏

– cINN: diverse results

– Quiz: Which color image is the ground-truth?

Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ො𝑝 𝑥 𝑦)

𝑦

Example: Image-to-Image Translation

34

𝑧 ∼ 𝑝𝑧(𝑧)

• Colorization as an inverse problem:
– forward process: turn color image to grayscale by

taking the L-channel in Lab color space

– inverse problem: reconstruct realistic color channels
𝑦 = 𝐿 ⇒ ො𝑥 = 𝑎, 𝑏

– cINN: diverse results

– Quiz: Which color image is the ground-truth?

Ardizzone et al. “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”, GCPR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN Architecture for Colorization

• Four convolutional stacks (with four to six coupling layers)

• Fully connected stack as backend (eight coupling layers)

• Coupling layers separated by random orthogonal matrices to mix channels

• Large feature detection network ℎ (VGG), small conditioning networks ℎ𝑙

• Multi-scale decomposition via
Haar-Wavelet down-sampling
(standard max pooling not invertible)

35Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization Examples

36Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization: Meaningful Latent Manipulations

• Magnitude of latent vector encodes color saturation
– Linear interpolation from 𝑧 = 0 outwards gradually increases saturation

37Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Colorization: Meaningful Latent Manipulations

• Color transfer
– Encode color of input image 𝑖 = 𝐿𝑖, 𝑎𝑖, 𝑏𝑖 : 𝑧𝑖 = 𝑓 𝑥 = 𝑎𝑖 , 𝑏𝑖 ; ℎ

′(𝑦 = 𝐿𝑖)

– Reconstruct color for a different grayscale image 𝐿𝑐: ො𝑥𝑖 = ෝ𝑎𝑖 , ෡𝑏𝑖 = 𝑔(𝑧𝑖; ℎ′(𝑦 = 𝐿𝑐)) with 𝑔 = 𝑓−1

while keeping the latent code 𝑧𝑖

38Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

𝐿𝑖 , 𝑎𝑖 , 𝑏𝑖

𝐿𝑐

𝐿𝑐 , ෝ𝑎𝑖 , ෡𝑏𝑖

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN for Image-to-Image Transformation

• Results:

39Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Condition y
Day image

Generated x
Night images

Ground truth x
Night image

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

cINN for Image-to-Image Transformation

• Results:

• Multi-scale features learned by the conditioning network:
– Level 1: edges and texture

– Level 2: foreground / background

– Level 3: populated areas (lights!)

40Ardizzone et al. “Guided Image Generation with Conditional Invertible Neural Networks”, arXiv 2019.

Condition y
Day image

Generated x
Night images

Ground truth x
Night image

Day image Level 1 Level 2 Level 3

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Solving Inverse Problems with Invertible Neural Networks

Ullrich Köthe

Visual Learning Lab, Heidelberg University

joint work with Lynton Ardizzone, Stefan Radev, Jakob Kruse, Tim Adler,

Carsten Rother, Lena Maier-Hein

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Towards an INN-based solution:
Linear Toy Example

• Forward process: given parameters 𝑥1, 𝑥2 ∼ 𝒩(0,1), observation 𝑦 arises according to
𝑦 = 𝑥1 + 𝑥2 = 𝑔(𝑥1, 𝑥2)

• Inverse 𝑥1, 𝑥2 = 𝑔−1(ො𝑦) for given observation ො𝑦 is undefined

– Classical regularization: minimum norm solution 𝑥1 = 𝑥2 =
ො𝑦

2
(disregards ambiguity!)

• Bayesian solution:
– Introduce latent variable 𝑧 = 𝑥1 − 𝑥2  𝑦, 𝑧 = 𝑔aug 𝑥1, 𝑥2 = 𝑥1 + 𝑥2, 𝑥1 − 𝑥2 is invertible!

– Reparametrize posterior 𝑝 𝑥1, 𝑥2 𝑦) as 𝑥1, 𝑥2 = 𝑔aug
−1 𝑦, 𝑧 =

𝑦+𝑧(𝑡)

2
,
𝑦−𝑧(𝑡)

2
with 𝑧 ∼ 𝒩(0,2)

• Given actual observation ො𝑦, repeat for 𝑡 ∈ 1,… , 𝑇:

– Sample 𝑧(𝑡) ∼ 𝒩(0,2) and compute 𝑥1
(𝑡)

=
ො𝑦+𝑧(𝑡)

2
and 𝑥2

(𝑡)
=

ො𝑦−𝑧(𝑡)

2

• Return 𝑥1
𝑡
, 𝑥2

𝑡

𝑡=1

𝑇
as a sample from the Bayesian posterior 𝑝 𝑥1, 𝑥2 ො𝑦)

Generalize this to complex settings (non-linear 𝑔, noise, high dimensions) by INNs.
42

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Endoscopes for minimally invasive surgery

• can be equipped with a multispectral camera

• tissue state 𝑥 (e.g. blood oxygenation) affects
the observed color spectrum 𝑦

• Task: given spectrum, find posterior distribution of tissue state parameters

• Forward process 𝑠(𝑥) is implemented by Monte Carlo simulation

43

Clips

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Invert the forward process 𝑠(𝑥) implemented by Monte Carlo simulation:
• training: INN learns 𝑦, 𝑧 = 𝑓𝜃 𝑥 ≈ 𝑠𝑎𝑢𝑔(𝑥) with 𝑝 𝑧 ~𝒩(0, 𝕀)

• inference: given observed spectrum ො𝑦, sample 𝑧𝑖~𝑝 𝑧 𝑖=1
𝑀 and

compute posterior sample 𝑥𝑖 = 𝑓𝜃
−1 ො𝑦, 𝑧𝑖 𝑖=1

𝑀
(independently for every pixel)

• determine mean and variance from 𝑥𝑖 − works especially well for blood oxygenation

44

𝑥 𝑦

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Results
• INN performs well

• not all parameters
are identifiable

45

Oxygenation Volume fraction Mie scattering Tissue thickness Anisotropy

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

Clips

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application: Multispectral Endoscopy

Results
• INN performs well

• not all parameters
are identifiable

• incorrect results
for other methods

– skewed distribut.
appear symmetric

– non-identifiable
parameters have
spurious mode

– correlation is
too weak or
too strong

46

Oxygenation Volume fraction Mie scattering Tissue thickness Anisotropy

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.

Clips

skewed unrecoverable correlation

symmetric overconfidence
independence

too much
correlation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Experimental Design for Multispectral Endoscopy

Analysis of posteriors: Which camera should be used?

– 3 to 27 spectral channels

– Which gives reliable results
at best price and usability?

– posterior oxygen level histograms:

 camera with 8
channels offers
best trade-off
between price
and accuracy

multimodal
response good✓high

variance

27 spectral channels8 spectral channels3 spectral channels

47Adler et al. “Uncertainty-Aware Performance Assessment of Optical Imaging Modalities with Invertible Neural Networks”, IPCAI 2019.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architecture for Endoscopy Application

• Forward process: given tissue parameters 𝑥, spectrum 𝑦 arises from MC simulation 𝑔
𝑦 = 𝑔(𝑥)

• Bayesian solution:
– Introduce latent variables 𝑧 collecting the information about 𝑥 that got lost in 𝑦 = 𝑔(𝑥)

𝑦, 𝑧 = 𝑔aug(𝑥)

– Train INN for 𝑔aug(𝑥) with 𝑝 𝑧 = 𝒩(0, 𝕀) and 𝑦 ⊥ 𝑧, using synthetic training data from the simulation

– Inference for real observation 𝑦obs:

• For 𝑡 ∈ 1,… , 𝑇:

– Sample 𝑧(𝑡) ∼ 𝒩(0, 𝕀)
– compute = 𝑥(𝑡) = 𝑔aug

−1 𝑦𝑜𝑏𝑠, 𝑧
(𝑡)

• Return 𝑥(𝑡)
𝑡=1

𝑇
as a sample from

Bayesian posterior 𝑝 𝑥 𝑦𝑜𝑏𝑠)

48

𝑔aug(𝑥)

𝑔aug
−1 (𝑦, 𝑧)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architectures for Conditional Inference

Split latent space

training: 𝑦, 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(ො𝑦, 𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

49

Latent mixture INN

training: 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = GMM 𝑧; 𝑦 = σ𝑦𝒩(𝜇𝑦, Σ𝑦)

inference: sample 𝑧 ~𝒩(𝜇 ො𝑦, 𝛴ො𝑦)

compute 𝑥 = 𝑓𝜃
−1(𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

Conditional INN

training: 𝑧 = 𝑓𝜃(𝑥; 𝑦)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

historically first classification, disentanglement inverse inference

=

Conditioned on 𝑦
𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow:
Model-Based Inverse Inference with cINNs

Model-based inverse inference:
– system with intrinsic parameters 𝑥 (hidden) and observations 𝑦 (measurable)

– good scientific understanding of the forward process: How does 𝑦 arise from given 𝑥?
(e.g. differential equations, simulations)

– solve the inverse problem: Which hidden parameters 𝑥 explain some actual observations ො𝑦?

– usually no analytic solution

• ambiguous outcomes due to information loss from 𝑥 to 𝑦must estimate posterior 𝑝 𝑥 ො𝑦)
• simplest approach: manually adjust 𝑥 until outcomes match ො𝑦  neglects uncertainty
• traditional Bayesian inference: sampling methods (MCMC, HMC, …)  very expensive

– standard ML methods are often not applicable

• lack of training data with known ground truth 𝑥∗

• only point estimates, no posteriors (i.e. no diverse outputs)

– cINN can elegantly solve the Bayesian inverse problem

50Radev et al. “BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks”, IEEE TNNLS 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow:
Model-Based Inverse Inference with cINNs

cINNs make clever use of the known forward model to solve the inverse problem

• run cINN in forward mode for model-based training

– use known forward model to create synthetic training data  cINN becomes a fast surrogate

– train with diverse forward scenarios and noise  cINN learns the ambiguity and uncertainty

• run cINN in backward mode for inverse inference

– use actual observations ො𝑦 as condition

• sample many latents 𝑧𝑘 ∼ 𝑝 𝑧 𝑘=1
𝑁

• run cINN backwards 𝑥𝑘 = 𝑔(𝑧𝑘; ො𝑦 𝑘=1
𝑁

51Radev et al. “BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks”, IEEE TNNLS 2020.

𝑧 = 𝑓(𝑥; 𝑦) 𝑥 = 𝑔 𝑧; ො𝑦 = 𝑓−1(𝑧; ො𝑦)

synthetic data real dataforward training backward inference

the 𝑥𝑘 are a sample of the
Bayesian posterior 𝑝 𝑥 ො𝑦)

“Train forward,
get the inverse

for free.”

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Covid-19 Epidemiology

Epidemiology as a difficult inverse problem:
• observations: time series of infected, recovered, deceased

(as of June 2020: 243 measurements = 3 observables over 81 days)

• 34 hidden parameters:

– infection rate 𝜆(𝑡)

– latent period 1/𝛾

– undetected fraction 𝛼

– case fatality rate 𝛿

– …

• prior knowledge:

– SIR-type compartmental model
(ODE system similar to Lotka-Voterra)

– dates of government interventions

– sources of reporting errors

– …

52

healthy
may get infected

symptom-free
cannot spread

undetected, can spread

ill, can spread healed, immune

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Forward Model: Epidemic Calculator

53Goh: “Epidemic Calculator”, https://gabgoh.github.io/COVID/, 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
The Networks

• Inference problem: observation sequence (IRD)  parameter posteriors
– Solve with BayesFlow network: cINN with statistical preprocessing networks for 𝑦

– Training: end-to-end optimization of maximum likelihood loss with 70000 simulations

Convolutional:
• noise reduction

feature detection

Recurrent (LSTM):
• variable-length sequence

to fixed size summary

Invertible (cINN):
• posterior inference

54Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

𝑝(𝑧)

I R D

ti
m

e

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Covid-19 Marginal Posteriors

Results: marginal posteriors for first wave in Germany (March – June 2020, 81 time steps)
• High fraction of undetected

infections:
63% (median), 79% (mode)

• Serial interval: 9-10 days

• High likelihood to transmit
disease before diagnosis

• time to recovery:
4.6 days (undetected infections)
11.3 days (diagnosed cases)
(3.2 + 8.1 days before/after
diagnosis)

• often non-Gaussian behavior

Correspond well to clinical findings

55Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

Fraction of undetected infections:

uniform prior  peaked posterior

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

BayesFlow for Epidemiology:
Strengths

Well-calibrated uncertainty quantification

• 𝑞% confidence intervals are hit ≈ 𝑞% of the time

• much better than classical estimators (e.g. least
squares fitting, manual parameter tuning, …)

Efficient backward operation  fast inference

• train once, predict often

• in contrast, MCMC runs from scratch for each ො𝑦

• Bayesflow upfront training effort ≈ 10 − 100x
of single MCMC inference

 training effort amortizes quickly

analysis of German states with identical network

Radev et al. “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Very diverse inverse problems
were solved with INNs/BayesFlow

• Surgery: blood oxygenation experimental design outlier detection

• Photo-acoustic imaging • Finance:

• Particle physics

• Astrophysics

• Environmental physics

• Cognitive Science

• Inverse kinematics of robots

• Mechanical engineering

57

Ardizzone et al. “Analyzing inverse problems with invertible neural networks”, ICLR 2019.
Adler et al. “Out of distribution detection for intra-operative functional imaging”, UNSURE 2019.

Shiono “Estimation of agent-based models using BayesFlow”, SSRN 2020.

Clips

BayesFlow
beets MCMC

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Guaranteed disentanglement with Nonlinear ICA
and Incompressible Flows

Ullrich Köthe

Visual Learning Lab, Heidelberg University

joint work with Carsten Rother, Peter Sorrenson

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

INN Architectures for Conditional Inference

Split latent space

training: 𝑦, 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(ො𝑦, 𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

59

Latent mixture INN

training: 𝑧 = 𝑓𝜃(𝑥)

s.t. 𝑝 𝑧 = GMM 𝑧; 𝑦 = σ𝑦𝒩(𝜇𝑦, Σ𝑦)

inference: sample 𝑧 ~𝒩(𝜇 ො𝑦, 𝛴ො𝑦)

compute 𝑥 = 𝑓𝜃
−1(𝑧)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

Conditional INN

training: 𝑧 = 𝑓𝜃(𝑥; 𝑦)

s.t. 𝑝 𝑧 = 𝒩(0, 𝕀)

inference: sample 𝑧 ∼𝒩(0, 𝕀)

compute 𝑥 = 𝑓𝜃
−1(𝑧; ො𝑦)

 𝑥 ∼ 𝑝 𝑥 ො𝑦)

historically first classification, disentanglement inverse inference

=

Conditioned on 𝑦
𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Interpretable Latent Spaces with
Latent Mixture INNs (LM-INNs)

Interpretable latent spaces are a key to explainable machine learning

• Latent Mixture INNs are especially suitable for this task
– Variation of cINNs: condition 𝑦 acts on the latent space, not on the function 𝑔

• cINN: 𝑥 ∼ 𝑝 𝑥 𝑦) ⟺ 𝑧 ∼ 𝑝(𝑧), 𝑥 = 𝑔(𝑧; 𝑦)
• LM-INN: 𝑥 ∼ 𝑝 𝑥 𝑦) ⟺ 𝑧 ∼ 𝑝(𝑧 𝑦 , 𝑥 = 𝑔(𝑧)

– Define 𝑝 𝑧 𝑦) as a mixture of Gaussians instead of a single Gaussian

– Especially simple when 𝑦 is a class label: learn one mixture component 𝑝 𝑧 𝑦 = 𝑘) per label 𝑘

60

=INN

Conditioned on 𝑦𝑝(𝐳 | 𝐲)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

What is Disentanglement?

61

Train network so that each latent feature has a single interpretable effect

Example: GLOW INN

• Try your own face:
openai.com/blog/glow/

changing the value of
a single latent feature
has a coordinated and
intuitive effect on many
pixels simultaneously

less more

Kingma & Dhariwal “Glow: Generative flow with invertible 1x1 convolutions”, NIPS 2018.

https://openai.com/blog/glow/

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Disentanglement: Definition

62

• Definition by Bengio et al.:
– A disentangled representation has recovered the “informative factors of variation” in a dataset

– Disentangled latent features separate different categories of information (e.g. identity, pose
and background) into independent degrees of freedom

• Disentangled representations are interpretable by humans and
generalize well for downstream tasks and transfer learning

• Methods so far empirically work well, but have no theoretical guarantees

• We apply the theory of nonlinear ICA to INNs to derive such guarantees

Bengio et al. “Representation Learning: A Review and New Perspectives”, PAMI 2013.
Khemakhem et al. “Variational autoencoders and nonlinear ICA: A unifying framework”, AISTAT 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

What is Disentanglement?

• Latent dimensions should have one and only one isolated effect on the data

• 𝛽-VAE disentangles azimuth whereas VAE entangles it with other variables

63Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”, ICLR 2017.

β-VAE VAE

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ID-GAN

• Information-Distillation Generative Adversarial Network is probably state-of-the-art

• Combine VAE encoder with conditional GAN generator
– Works well on large images

(CelebA-HQ: 1024x1024)

– GAN conditioned on β-VAE
latent code

– Additional cycle constraint:
maximize mutual information
between latent codes of
real and fake images

64

azimuth

BG color

bang

Lee et al. “High-Fidelity Synthesis with Disentangled Representation”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

LM-INNs for Disentanglement

• Fundamental disentanglement: separate content from noise
– number of content dimensions = intrinsic dimension of the dataset

– similar to autoencoder bottleneck, but intrinsic dimension is learned (not chosen as a hyperparameter)

• Content disentanglement: disentangle content subspace into meaningful features

65Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

knee at 22 variablesno knee

Classical: linear disentanglement by PCA
• do eigen decomposition
• sort features (eigenvectors)

by energy (eigenvalues)

Spectrum is usually smooth
 no clear choice for

intrinsic dimension

New: non-linear ICA by LM-INN
• train LM-INN (𝑦 = class labels)
• sort features (latent variables)

by energy (latent variance)

Spectrum may have marked knee
 clear identification of

the intrinsic dimension

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap: PCA (Principal Component Analysis)

66

• Classical method for unsupervised disentanglement with a linear transformation
– Finds uncorrelated basis vectors for multivariate Gaussian distributions

– Can be applied to non-Gaussian data, but cannot fully disentangle them

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Recap: ICA (Independent Component Analysis)

67

• Roughly: Independent Component Analysis generalizes PCA to non-gaussian case
– Apply arbitrary invertible linear transformation to factorial non-Gaussian latent distribution

Latent space
(non-gaussian,
independent dimensions)

Data space

Invertible linear
transformation

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Nonlinear ICA

68

• Replace the linear transformation with an invertible non-linear transformation

Invertible non-linear
transformation

Latent space
Data space

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Non-linear ICA as a Disentanglement Method

69

• Disentanglement: undo the non-linear mixing of given data, recover latent space

• This in general impossible: non-linear mappings are too flexible  ambiguity unresolvable
• Transformations

𝑓(𝑧) and 𝑓(𝑔 𝑧)
produce identical
distributions

 non-linear ICA is
unidentifiable

f

fg

Latent space Alternative latent sp. Data space

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

ICA as a Disentanglement Method

70

• Fundamental insight: we need to constrain transformations g in the latent space
– Constrain latent distributions by conditioning, e.g. by introducing a mixture distribution

Latent space
(mixture with conditionally
independent dimensions)

Invertible nonlinear
transformation Alternative data spaces

(different solutions place the
colors differently)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

LM-INNs for Disentanglement

LM-INNs fulfill the theoretical assumptions of non-linear ICA

Important negative result [Hyvärinen & Pajunen 1999]:
Fully unsupervised non-linear disentanglement is impossible
General non-linear transformations are too powerful – can fit everything

Recent positive results: non-linear disentanglement becomes identifiable with
additional conditioning information, e.g.

– Temporal relations [Hyvärinen & Morioka 2017, Hyvarinen, Sasaki, Turner 2018]

– Multi-modal observations [Gresele, Rubenstein, Mehrjou, Locatello, Schölkopf 2020]

– Class labels [our work]

Mathematical guarantees that non-linear ICA finds the true generative factors and the
true intrinsic dimension in certain situations (generalizing this is a hot research topic).

71Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

General Incompressible-flow Networks (GIN)

72

• Modification of Real NVP coupling block architecture
– Constrain the Jacobian to determinant 1

– This differs from additive coupling (NICE): space can be scaled in some dimensions, when this is
compensated for by a counter change in the remaining dimensions

• Advantage:
– Total “Variance” is preserved

Spectrum of latent variables can be sorted and interpreted as in PCA

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

or

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Artificial Data Experiments

73

• True generative process:
– 5 Gaussian mixture components (“class labels”), 2 meaningful dimensions, 8 noise dimensions
– Mapped to 10-dimensional data space using a random non-linear transformation

• Task of the INN:
– Determine that intrinsic dimension is 2

– Recover the GMM within the meaningful dimensions, given the class labels

Nonlinear mixing GIN trained with
class-conditional NLL

Intrinsic dimension
evidenced by knee

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Artificial Data Experiments

74

• Intuition: works, because all clusters must be disentangled simultaneously
– Breaks down, when clusters have no overlap: model transforms these clusters independently

– Can be caused by lack
of training data:

104 data points

105 data points

knee is lost

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

LM-INNs for Disentanglement

• Identify intrinsic factors of complicated data
distributions, which intuitively explain variability

• Express complex/coordinated changes of the data
as a combination of simple changes in the factors

• Example: EMNIST
handwritten digits:
latent factors are
characteristics of
handwriting styles

75

=

+

angle

pen width

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020. 78

• First 8 latent variables
control global properties

• Following 14 control
local shape

• Remaining 762 have
no visible effect

Var. 1: upper width Var. 8: lower width Var. 3: height

Var. 13: top left of 2,3,7 Var. 16: tail of 2 Var. 23: no effect

difference images

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Application to EMNIST

79Sorrenson et al. “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020.

Latent space
interpolation

Independent effect
of first 8 most

significant latent
dimensions

(animations not visible

in PDF version)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI) VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs – Building (more) interpretable models
with INN-based generative classifiers

Ullrich Köthe

Visual Learning Lab, Heidelberg University

joint work with Lynton Ardizzone, Radek Mackowiak, Jakob Kruse, Carsten Rother

Tutorial „Normalizing Flows“ at CVPR 2021

June 2021

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs: Generative Classifiers

• What is a generative classifier (GC)?
– Classifier: given image 𝑥, predict label 𝑦 of most salient object

– A discriminative classifier (DC): learns the class posterior probability 𝑝(𝑦 | 𝑥)

– Generative classifier: instead learns the data likelihood 𝑝(𝑥 | 𝑦)
and computes the posterior indirectly by Bayes rule:

• GCs promise to foster reliability and interpretability
– uncertainty quantification, outlier detection, robustness against distribution shifts

– discovery of meaningful features

– but: predictive performance of GCs used to be unconvincing  discriminative classifiers (DCs) prevailed

• Old idea, but so far discriminative classifiers have much better performance

81

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

The Information Bottleneck Principle

• Naively trained generative classifiers: poor classification accuracy in comparison to DCs
– Tend to overfit

• Information bottleneck principle overcomes this problem
– Introduce latent representation 𝑧, where all information flows through – “bottleneck”

– Latent variables 𝑧 should be: highly informative for 𝑦 (= good classification)
keep only as much information about 𝑥 as needed (= no overfitting)

• Minimize Information Bottleneck (IB) loss

with Mutual Information (MI)

82

Discriminative aspect
(maximize information

about class labels)

Generative aspect
(minimize spurious

information about x)
Trade-off parameter

Tishby et al. “The Information Bottleneck Method”, ACCCC 1999.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs: Generative Classifiers

• Learning 𝑝(𝑥 | 𝑦) is a density estimation problem
– Normalizing flows are good at density estimation

– We actually model 𝑝 𝑧 𝑦 as a latent GMM
and train an INN to transform this into 𝑝(𝑥 | 𝑦)
 this is a latent mixture INN

– The model can be trained using the
Information Bottleneck Principle

• Problem: INNs are lossless encoders – where is the bottleneck?
– Train the INN mapping 𝑧 = 𝑓 𝑥 with noise augmented data 𝑥′ = 𝑥 + 𝜖 :

ℒ𝐼𝐵 = lim
𝜖→0

𝐼 𝑥; 𝑧𝜖 = 𝑓 𝑥′ − 𝛽 ⋅ 𝐼 𝑦; 𝑧𝜖 = 𝑓 𝑥′

– Intuitively: noise ensures lossy encoding  prevents divergence of 𝐼 𝑥; 𝑧𝜖 = 𝑓 𝑥′

– Surprisingly, mutual information 𝐼(𝑥; 𝑧𝜖) reduces to the usual maximum likelihood loss

𝐼 𝑥; 𝑧𝜖 = 𝔼𝑝 𝑥 ,𝑝(𝜖) − log 𝑝 (𝑥 + 𝜖) = 𝔼𝑝 𝑥 ,𝑝(𝜖) − log 𝑝𝑍 𝑧𝜖 − log det ∇𝑓

83

𝐼 𝑥; 𝑓 𝑥′ 𝐼 𝑦; 𝑓 𝑥′

Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INN: Training an LM-INN as a Generative Classifier

LM-INN can approximate the IB loss arbitrarily well  IB-INN
– Successfully trained on CIFAR-10 (10 classes, 322 images)

and ImageNet (1000 classes, 2242 images)

– Depending on 𝛽, the IB-INN emphasizes generative or
discriminative performance

• at 𝛽 = 1, bits/dimension (=generative performance)
comparable to a purely generative model

• at 𝛽 =32, test accuracy (=discriminative performance)
comparable to a discriminative ResNet

• ImageNet: good trade-off at 𝛽 = 8

84
Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, NeurIPS (oral) 2020.

Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR (oral) 2021.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Class separation improves as 𝛽 (= importance of 𝐼(𝑦; 𝑧)) increases
– CIFAR-10 examples (PCA projection of latent space)

85Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Heatmaps for attention area of the
most probable classes
– Back-project relevant latent features

to image space regions

– Thanks to invertibility, the heat-maps
represent the true decision process,
not a post-hoc explanation

86Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR (oral) 2021.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (1): Interpretability

• Pairwise distances between class centers in z-space reflect class similarity and confidence
– ImageNet examples

87Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR (oral) 2021.

correct with
high confidence

ambiguous w/
high confidence

multiple objects
with medium
confidence

incorrect with
low confidence

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

• Outliers have low likelihood for every class

– Intuitively: can separate in-/outliers using
threshold on likelihood

– Many interesting open questions

• Which outlier scores does IB-INN support?
(e.g. typicality tests, WAIC, …)

• What does it mean for an instance to be an
outlier in high dimensions?
(much of our intuition is based on low
dimensional case and thus misleading)

• Which latent re-parameterizations are
sensitive for which type of outlier?

88Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR (oral) 2021.

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (2): Out-of-Distribution Detection

• Outliers have low likelihood for every class
– Artificial outliers: scrambled colors (CIFAR-10) Adversarial examples (ImageNet)

89

Le
ar

n
ed

 lo
g-

p
ro

b
ab

ili
ty

Inlier images (test set) Same images, scrambled colors

Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, NeurIPS (oral) 2020.
Mackowiak, Ardizzone et al. “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR (oral) 2021.

97% outlier
detection accuracy

Minimal perturbations to get
confident incorrect predictions

 IB-INN improves adversarial robustness,
but does not in itself solve the problem

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

IB-INNs:
Benefits of GC (3): Uncertainty Calibration

• Calibration = consistency of confidence vs. actual performance
– If classifier is 90% confident about class label, it should be right 90% of the time, neither less nor more

– Problematic for discriminative classifiers [Guo et al. 2017] – IB-INNs are much better calibrated

90

GC: IB-INN β=1
(CIFAR-10)

Guo et al. “On calibration of modern neural networks”, ICML 2017.
Ardizzone et al. “Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification”, arXiv 2020.

DC: ResNet-18
(CIFAR-10)

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Summary

Public code of our FrEIA library: https://github.com/VLL-HD/FrEIA

• INNs are very good density estimators:
– Not yet quite as good as GANs (as trained by the Big Guys with 300 GPUs in parallel ☺)

– But with much stronger mathematical interpretation and guarantees

• Three main approaches to incorporate additional information
– Conditional INN: learn 𝑝𝑧(𝐳 = 𝑓INN(𝐱; 𝐲))

– Latent mixture INN: learn 𝑝𝑧(𝐳 = 𝑓INN 𝐱 | 𝐲)

– Augmented latent space INN: learn 𝑝𝑦,𝑧(𝐲, 𝐳 = 𝑓INN 𝐱)

– We get the full posterior 𝑝 𝑥 𝑦), both exactly and through samples

• Future work:
– Improve architectures and training

– Strengthen validation and mathematical guarantees

– Apply to various problems in natural and life sciences

– Better incorporation of prior knowledge from the application domain
91

https://github.com/VLL-HD/FrEIA

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

Thanks to our team and collaborators!

Visual Learning Lab, Uni Heidelberg:

Lynton Ardizzone

Jakob Kruse

Jens Müller

Felix Draxler

Radek Mackowiak

Peter Sorrenson

Carsten Rother

York University, Canada:

Marcus Brubaker

German Cancer Research Center, Heidelberg:

Tim Adler, Sebastian Wirkert, Lena Maier-Hein

Inst. for Theoretical Astrophysics, Uni Heidelberg:

Victor Ksoll, Ralf Klessen

Inst. for Environmental Physics, Uni Heidelberg:

André Butz, Florian Kleinicke

Psychologisches Institut, Uni Heidelberg:
Stefan Radev, Ulf Mertens, Andreas Voss

92

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

References

Public code of our INNs and papers in the FrEIA library: https://github.com/VLL-HD/FrEIA

Adler, T., et al.: “Uncertainty-aware performance assessment of optical imaging modalities with invertible neural networks”,

Intl. J. Computer Assisted Radiology and Surgery 14(6):997–1007 (2019).

Adler, T. J., et al. „Out of distribution detection for intra-operative functional imaging“, In: Uncertainty for Safe Utilization of Machine Learning in
Medical Imaging and Clinical Image-Based Procedures (pp. 75-82), arXiv:1911.01877 (2019).

Ardizzone, L. et al.: “Analyzing inverse problems with invertible neural networks”, ICLR 2019, arXiv:1808.04730 (2018).

Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: “Conditional Invertible Neural Networks for Diverse Image-to-Image Translation”,
GCPR 2020, arXiv:1907.02392 (2019).

Ardizzone, L., Mackowiak, R., Kruse, J., Rother, C., Köthe, U.: “Training Normalizing Flows with the Information Bottleneck for
Competitive Generative Classification”, NeurIPS 2020 (oral), arXiv:2001.06448 (2020).

Behrmann, J., Duvenaud, D., & Jacobsen, J. H.: “Invertible residual networks”, ICML 2019, arXiv:1811.00995 (2018).

Bellagente, M. et al.: “Invertible Networks or Partons to Detector and Back Again”, SciPost Phys. 2020, arXiv:2006.06685 (2020).

Bieringer, S. et al.: “Measuring QCD Splittings with Invertible Networks“, arXiv:2012.09873 (2020).

Bengio, Y., et al.: “Representation Learning: A Review and New Perspectives”, IEEE PAMI 35(8):1798-1828 (2013).

Bloem-Reddy, B., & The, Y.W.: “Probabilistic symmetry and invariant neural networks”, JMLR 21(90):1−61(2020).

Draxler, F., Schwarz, J., Schnörr, C., Köthe, U.: “Characterizing the Role of a Single Coupling Layer in Affine Normalizing Flows”,
GCPR (best paper finalist) (2020).

Dinh, L., Sohl-Dickstein, J., Bengio, S.: “Density estimation using Real NVP”, arXiv:1605.08803 (2016).

Guo, Ch., et al.: “On calibration of modern neural networks”, ICML (2017).

Khemakhem, I., et al.: “Variational autoencoders and nonlinear ICA: A unifying framework”, AISTAT (2020).

93

https://github.com/VLL-HD/FrEIA

VISUAL LEARNING LAB – HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING (HCI)

References

Kingma, D., & Dhariwal, P.: “Glow: Generative flow with invertible 1x1 convolutions”, NIPS (2018).

Kobyzev, S., Prince, JD., Brubaker, M.: “Normalizing Flows: An Introduction and Review of Current Methods”, arXiv:1908.09257 (2019).

Kruse, J., et al.: “Benchmarking Invertible Architectures on Inverse Problems”, ICML Workshop INNF, arXiv:2101.10763 (2019).

Kruse, J., Detommaso, G., Köthe, U., Scheichl, R. “HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference”,
AAAI 2021, arXiv:1905.10687 (2019)

Ksoll, V. et al.: “Stellar Parameter Determination from Photometry using Invertible Neural Networks”, MNRAS, arXiv:2007.08391 (2020).

Ksoll, V. et al.: “Measuring Young Stars in Space and Time”, part 1: arXiv:2012.00521 , part 2: arXiv:2012.00524 (2020).

Lee, W., et al.: “High-Fidelity Synthesis with Disentangled Representation”, arXiv:2001.04296 (2020).

Mackowiak, R., Ardizzone, L. et al.: “Generative Classifiers as a Basis for Trustworthy Computer Vision”, CVPR 2021 (oral), arXiv:2007.15036 (2020).

Müller, J., Schmier, R., Ardizzone, L., Rother, C., Köthe, U. (2020). “Learning Robust Models Using The Principle of Independent Causal Mechanisms”
arXiv:2010.07167 (2020).

Nölke, JH. et al.: “Invertible Neural Networks for Uncertainty Quantification in Photoacoustic Imaging”, arXiv:2011.05110 (2020).

Papamakarios, G. et al.: “Normalizing Flows for Probabilistic Modeling and Inference”, JMLR, 22(57):1-64, arXiv:1912.02762 (2021).

Putzky, P., & Welling, M.: “Invert to Learn to Invert”, NeurIPS (2019).

Radev, S., et al.: “BayesFlow: Learning Complex Stochastic Models with Invertible Neural Networks”, IEEE TNNLS, arXiv:2003.06281 (2020).

Radev, S., et al.: “Model-based Bayesian inference – an application to the COVID-19 pandemics in Germany”, arXiv:2010.00300 (2020).

Shiono, T.: “Estimation of Agent-Based Models Using Bayesian Deep Learning Approach of BayesFlow”, SSRN:3640351 (2020).

Sorrenson, P., Rother, C., Köthe, U.: “Disentanglement by Nonlinear ICA with General Incompressible-flow Networks (GIN)”, ICLR 2020,
arXiv:2001.04872 (2020).

Tishby, N., et al.: “The Information Bottleneck Method”, Allerton Conf. Communic., Control, Computing, arXiv:0004057 (1999).
94

